Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(8): 103887, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38861845

RESUMO

Hyperuricemia (HUA) is a metabolic disorder caused by excessive production of uric acid (UA) or impaired uric acid metabolism. Smilax China L. has a wide range of pharmacological activities such as immunomodulatory, anti-inflammatory, and antioxidant. Its roots and rhizomes have been widely used for the treatment of HUA. However, its mechanisms for treating HUA and reducing renal impairment have not been fully elucidated. In the present study, we evaluated the effect of Smilax China L. extract (SC) on UA metabolism and further explored its mechanism of action by feeding a high-calcium and high-protein diet to chickens to induce a model of HUA in chickens. SC significantly reduced serum UA levels and improved renal function in hyperuricemic chickens. Meanwhile, SC was able to inhibit the activity of xanthine oxidase (XOD) in vivo and in vitro, reducing the production of uric acid. In addition, SC was able to increase the expression of Breast Cancer Resistance Protein (BCRP) in the kidney and ileum and increase uric acid excretion. Therefore, our results suggest that SC may be a candidate for anti-hyperuricemia.

2.
Phytomedicine ; 128: 155415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503151

RESUMO

BACKGROUND: Chichoric acid (CA) is a major active ingredient found in chicory and Echinacea. As a derivative of caffeic acid, it has various pharmacological effects. PURPOSE: Due to the unclear etiology and disease mechanisms, effective treatment methods for ulcerative colitis (UC) are currently lacking. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and dextran sulfate sodium (DSS)-induced mouse UC models. METHODS: Folate-chicory acid liposome was prepared using the double emulsion ultrasonic method with the aim of targeting folate receptors specifically expressed on macrophages. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and DSS -induced mouse UC models. Furthermore, the effects of the liposomes on macrophage polarization and their underlying mechanisms in UC were explored. RESULTS: The average particle size of folate-chicory acid liposome was 120.4 ± 0.46 nm, with an encapsulation efficiency of 77.32 ± 3.19 %. The folate-chicory acid liposome could alleviate macrophage apoptosis induced by LPS, decrease the expression of inflammatory factors in macrophages, enhance the expression of anti-inflammatory factors, inhibit macrophage polarization towards the M1 phenotype, and mitigate cellular inflammation in vetro. In vivo test, folate-chicory acid liposome could attenuate clinical symptoms, increased colon length, reduced DAI scores, CMDI scores, and alleviated the severity of colonic histopathological damage in UC mice. Furthermore, it inhibited the polarization of macrophages towards the M1 phenotype in the colon and downregulated the TLR4/NF-κB signaling pathway, thereby ameliorating UC in mice. CONCLUSION: Folate-chicory acid liposome exhibited a uniform particle size distribution and high encapsulation efficiency. It effectively treated UC mice by inhibiting the polarization of macrophages towards the M1 phenotype in the colon and downregulating the TLR4/NF-κB signaling pathway.


Assuntos
Ácidos Cafeicos , Colite Ulcerativa , Ácido Fólico , Lipopolissacarídeos , Lipossomos , Macrófagos , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Ácido Fólico/farmacologia , Ácido Fólico/química , Ácido Fólico/análogos & derivados , Receptor 4 Toll-Like/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Masculino , Células RAW 264.7 , Modelos Animais de Doenças , Sulfato de Dextrana , Succinatos/farmacologia , Succinatos/química , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
3.
Poult Sci ; 103(3): 103425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228062

RESUMO

Heat stress (HS) in broilers can be an environmental stressor that leads to intestinal inflammation and intestinal barrier damage. In order to examine the effect of Ban Lian Zi Jin San (BLZJS) on intestinal inflammation and barrier function in heat-stressed broilers, a model of chronic cyclic HS in broilers was established. A total of 300 twenty-one-day-old broilers were divided into 5 treatments at random. Broilers in 3 BLZJS dosage groups were kept in an ecologically controlled room at 37℃ ± 2℃ for 6 wk, and fed basal diets supplemented with 0.5, 1, and 2% BLZJS. Broilers in HS group were housed in the same room, but fed the basal diets. The findings indicated that supplementation of BLZJS significantly declined serum HS indexes levels (HSP70, HSP90), and increased serum antioxidant capacity (SOD and T-AOC) in broilers (P < 0.05). Besides, supplementation of BLZJS significantly inhibited the expression of HS indexes (HSP70 and HSP90), genes related to TLR4 inflammatory signal pathway (TLR4, MyD88, TRIF, IRAK-4, and NF-κB), inflammatory factors (IL-6 and TNF-α), and upregulated anti-inflammatory cytokines (IL-10) and intestinal tight junction-related genes (Occludin, Claudin-1, and ZO-1) in broiler jejunum (P < 0.05). On the other hand, supplementation of BLZJS could significantly reduce the protein expression of NF-κB and HSP70 in chick jejunum (P < 0.05). In conclusion, BLZJS inhibited the activation of TLR4 signal pathway and reduced the production of inflammatory factors, restoring the level of intestinal tight junction protein and protecting jejunal intestinal barrier function in heat-stressed broilers.


Assuntos
Galinhas , NF-kappa B , Animais , Galinhas/fisiologia , Receptor 4 Toll-Like , Resposta ao Choque Térmico , Inflamação/veterinária
4.
Poult Sci ; 102(11): 103032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769495

RESUMO

To determine whether the antipyretic effect of the mixture of Radix isatidis, Forsythiae, and Gypsum (RIFG) on lipopolysaccharide (LPS) induced fever broilers and its related mechanisms. A total of 315 24-day-old yellow-plumed broilers were randomly divided into 7 groups, except for the control group, other groups were injected with LPS. Two hours later, RIFG were given drinking water to relieve fever, and it was evaluated by the expression of genes and proteins of the maximum body temperature rise (∆T), body temperature response index (TRI), serum and hypothalamic pyrogenic heat factor. RIFG could reduce the body temperature of broilers with fever (P < 0.01). It inhibited the expressions of IL-6 and PGE2 (P < 0.01), down-regulated mRNA expression levels of TNF-ɑ and COX-2 (P < 0.01), and promoted the generation of antipyretic factor AVP mRNA (P < 0.01). In addition, the expression level of TLR4 and NF-κB p65 protein can be down-regulated, and LPS + RM group has the best down-regulated effect. RIFG had a good antipyretic effect on reducing LPS-induced fever of broilers by inhibiting the activation of TLR4/NF-κB signaling pathway and thermogenic factors.

5.
J Ethnopharmacol ; 307: 116221, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36754188

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Echinacea purpurea (L.) Moench (EP) is a perennial herbaceous flowering plant, commonly known as purple conical flower. It was widely used to treat skin inflammation and gastrointestinal diseases. AIM OF STUDY: Ulcerative colitis (UC) is a chronic and nonspecific inflammatory disease. Recent evidence shows that immune disorders are involved in the pathogenesis of UC. To evaluate the protective effect of Echinacea purpurea (L.) Moench exact (EE) on UC and explore the role of complement system in the treatment of UC. MATERIALS AND METHODS: UC model was induced in rats by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and then rats were administered with EE for 10 days. Collect colon tissues for analysis of relevant mechanisms. RESULTS: EE could reduce the weight loss and diarrhea of UC rats. In addition, EE could improve the integrity of intestinal epithelial barrier in UC rats. EE inhibited the level of proinflammatory cytokines and promoted the antioxidation. Furthermore, EE suppressed the expression of C3aR, CFB, CD55, TLR4 and NLRP3. CONCLUSION: These results indicate that EE may achieve therapeutic effect by inhibiting C3a/C3aR signal pathway, suggesting that EE may be used as a medicinal plant to alleviate UC.


Assuntos
Colite Ulcerativa , Echinacea , Animais , Ratos , Colite Ulcerativa/tratamento farmacológico , Colo , Inflamação/patologia , Transdução de Sinais , Ácido Trinitrobenzenossulfônico , Complemento C3a/metabolismo
6.
Foods ; 12(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38231750

RESUMO

Echinacea purpurea is popularly used as a food supplement or nutritional supplement for its immune regulatory function against various threats. As one of its promising components, Echinacea purpurea (L.) Moench polysaccharide (EPP) has a wide range of biological activities. To evaluate the effect of EPP as a dietary supplement on ulcerative colitis (UC), this study used sodium dextran sulfate (DSS) to induce a UC model, extracted EPP using the ethanol subsiding method, and then supplemented with EPP by gavage for 7 days. Then, we evaluated the efficacy of EPP on DSS rats in terms of immunity, anti-inflammation, and intestinal flora. The result showed that EPP could alleviate colonic shortening and intestinal injury in rats with DSS-induced colitis, decrease the disease activity index (DAI) score, downregulate serum levels of inflammatory cytokines, and contribute to the restoration of the balance between the T helper cells 17 (Th17) and the regulatory T cells (Treg) in the spleen and mesenteric lymph nodes (MLNs). Meanwhile, EPP could downregulate the expression of Toll-like receptors 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa-B (NF-κB) in colon tissue. In addition, the results of 16SrRNA sequencing showed that EPP also had a regulatory effect on intestinal flora of UC rats. These results indicate that EPP might achieve a beneficial effect on UC rats as a dietary supplement through restoring Th17/Treg balance, inhibiting the TLR4 signaling pathway and regulating intestinal flora, suggesting its possible application as a potential functional food ingredient alleviating UC.

7.
Sci Rep ; 10(1): 9963, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561812

RESUMO

Plants generate a plethora of secondary compounds (toxins) that potently influence the breadth of the breeding niches of animals, including Drosophila. Capsaicin is an alkaloid irritant from hot chili peppers, and can act as a deterrent to affect animal behaviors, such as egg laying choice. However, the mechanism underlying this ovipositional avoidance remains unknown. Here, we report that Drosophila females exhibit a robust ovipositional aversion to capsaicin. First, we found that females were robustly repelled from laying eggs on capsaicin-containing sites. Second, genetic manipulations show that the ovipositional aversion to capsaicin is mediated by activation of nociceptive neurons expressing the painless gene. Finally, we found that capsaicin compromised the health and lifespan of flies through intestinal dysplasia and oxidative innate immunity. Overall, our study suggests that egg-laying sensation converts capsaicin into an aversive behavior for female Drosophila, mirroring an adaptation to facilitate the survival and fitness of both parents and offspring.


Assuntos
Comportamento Animal/efeitos dos fármacos , Capsaicina/farmacologia , Doenças do Sistema Digestório/induzido quimicamente , Drosophila/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Intestinos/efeitos dos fármacos , Oviposição/efeitos dos fármacos , Animais , Capsicum/química , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Canais Iônicos/metabolismo , Neurônios/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...