Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139284

RESUMO

Increasing ELF-EMF pollution in the surrounding environment could impair the cognition and learning ability of honeybees, posing a threat to the honeybee population and its pollination ability. In a social honeybee colony, the numbers of adult bees rely on the successful large-scale rearing of larvae and continuous eclosion of new adult bees. However, no studies exist on the influence of ELF-EMFs on honeybee larvae. Therefore, we investigated the survival rate, body weight, and developmental duration of first instar larvae continuously subjected to ELF-EMF exposure. Moreover, the transcriptome of fifth instar larvae were sequenced for analyzing the difference in expressed genes. The results showed that ELF-EMF exposure decreases the survival rate and body weight of both white-eye pupae and newly emerged adults, extends the duration of development time and seriously interferes with the process of metamorphosis and pupation. The transcriptome sequencing showed that ELF-EMF exposure decreases the nutrient and energy metabolism and impedes the degradation of larvae tissues and rebuilding of pupae tissues in the metamorphosis process. The results provide an experimental basis and a new perspective for the protection of honeybee populations from ELF-EMF pollution.

2.
Nat Microbiol ; 7(8): 1259-1269, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35918420

RESUMO

Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the L-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, Rotavirus A and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Mamíferos , Pangolins , SARS-CoV-2/genética
3.
Emerg Microbes Infect ; 11(1): 1657-1663, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35678141

RESUMO

Pangolins have gained increasing global attention owing to their public health significance as potential zoonotic hosts since the identification of SARS-CoV-2-related viruses in them. Moreover, these animals could carry other respiratory viruses. In this study, we investigated the virome composition of 16 pangolins that died in 2018 with symptoms of pneumonia using metagenomic approaches. A total of eight whole virus sequences belonging to the Paramyxoviridae or Pneumoviridae families were identified, including one human parainfluenza virus 3, one human respiratory syncytial virus A, and six human respiratory syncytial virus B. All of these sequences showed more than 99% nucleotide identity with the virus isolated from humans at the whole-genome level and clustered with human viruses in the phylogenetic tree. Our findings provide evidence that pangolins are susceptible to HPIV3 and HRSV infection. Therefore, public awareness of the threat of pangolin-borne pathogens is essential to stop their human consumption and to prevent zoonotic viral transmission.


Assuntos
COVID-19 , Infecções por Paramyxoviridae , Vírus Sincicial Respiratório Humano , Animais , Humanos , Pangolins , Vírus da Parainfluenza 3 Humana/genética , Filogenia , Vírus Sincicial Respiratório Humano/genética , SARS-CoV-2
4.
Neurochem Res ; 46(9): 2485-2494, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34212292

RESUMO

Mitochondrial-associated endoplasmic reticulum (ER) membranes (MAMs) regulate calcium (Ca2+) homeostasis via Ca2+ transport-related proteins such as inositol-1,4,5-triphosphate receptor (IP3R). FAM134B-mediated ER-phagy plays an important role in ER homeostasis. However, it remains unknown whether FAM134B-mediated ER-phagy affects mitochondrial Ca2+ homeostasis and cell death through MAMs. In this study, we demonstrated that colocalization degree of FAM134B with LC3 and the LC3-II/LC3-I ratio were elevated in the hippocampal neuronal culture (HNC) model of acquired epilepsy (AE), which indicate an increased level of autophagy. In this model, FAM134B overexpression enhanced ER-phagy, while FAM134B downregulation had the opposite effect. Additionally, FAM134B overexpression significantly reversed the increases in IP3R expression and mitochondrial Ca2+ concentration and the decrease in the ER Ca2+ concentration in this model. FAM134B overexpression also ameliorated the AE-induced ultrastructural damage in neuronal mitochondria, decrease in mitochondrial membrane potential (mMP), cytochrome c (CytC) release and caspase-3 activation, while FAM134B downregulation induced the opposite effects. Altogether, our data indicate that FAM134B-mediated ER-phagy can attenuate AE-induced neuronal apoptosis, possibly by modulating the IP3R in MAMs to alter Ca2+ exchange between ER and mitochondria and thus inhibit mitochondrial structural damage, a decrease in mMP, release of CytC and mitochondrial apoptosis.


Assuntos
Apoptose/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Autofagia/fisiologia , Caspase 3/metabolismo , Citocromos c/metabolismo , Epilepsia/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Homeostase/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Ratos Sprague-Dawley
5.
BMC Biol ; 19(1): 67, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832502

RESUMO

BACKGROUND: Trachypithecus leucocephalus, the white-headed langur, is a critically endangered primate that is endemic to the karst mountains in the southern Guangxi province of China. Studying the genomic and transcriptomic mechanisms underlying its local adaptation could help explain its persistence within a highly specialized ecological niche. RESULTS: In this study, we used PacBio sequencing and optical assembly and Hi-C analysis to create a high-quality de novo assembly of the T. leucocephalus genome. Annotation and functional enrichment revealed many genes involved in metabolism, transport, and homeostasis, and almost all of the positively selected genes were related to mineral ion binding. The transcriptomes of 12 tissues from three T. leucocephalus individuals showed that the great majority of genes involved in mineral absorption and calcium signaling were expressed, and their gene families were significantly expanded. For example, FTH1 primarily functions in iron storage and had 20 expanded copies. CONCLUSIONS: These results increase our understanding of the evolution of alkali tolerance and other traits necessary for the persistence of T. leucocephalus within an ecologically unique limestone karst environment.


Assuntos
Colobinae , Álcalis , Animais , China , Genoma , Presbytini , Transcriptoma
6.
Insect Sci ; 28(2): 457-471, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112590

RESUMO

Workers of Apis cerana cerana undergo an in-hive nursing to outdoor foraging transition, but the genes underlying this age-related transition remain largely unknown. Here, we sequenced the head transcriptomes of its 7-day-old normal nurses, 18- and 22-day-old normal foragers, 7-day-old precocious foragers and 22-day-old over-aged nurses to unravel the genes associated with this transition. Mapping of the sequence reads to Apis mellifera genome showed that the three types of foragers had a greater percentage of reads from annotated exons and intergenic regions, whereas the two types of nurses had a greater percentage of reads from introns. Pair- and group-wise comparisons of the five transcriptomes revealed 59 uniquely expressed genes (18 in nurses and 41 in foragers) and 14 nurse- and 15 forager-upregulated genes. The uniquely expressed genes are usually low-abundance long noncoding RNAs, transcription factors, transcription coactivators, RNA-binding proteins, kinases or phosphatases that are involved in signaling and/or regulation, whereas the nurse- or forager-upregulated genes are often high-abundance downstream genes that directly perform the tasks of nurses or foragers. Taken together, these results suggest that the nurse-forager transition is coordinated by a social signal-triggered epigenetic shift from introns to exons/intergenic regions and the resulting transcriptional shift between the nurse- and forager-associated genes.


Assuntos
Abelhas/genética , Proteínas de Insetos/genética , Características de História de Vida , Transcriptoma , Animais , Abelhas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo
7.
Food Sci Nutr ; 8(4): 2035-2051, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328270

RESUMO

To determine antimicrobial resistance, 431 samples of retail foods purchased at different supermarkets in Northern Xinjiang were examined in this study. There were 112 Escherichia coli strains that were isolated, with approximately 26% of the samples contaminated by E. coli. The detection rate of E. coli isolated from pork was the highest (59.6%), followed by mutton (52.6%), retail fresh milk (52.4%), duck (36.4%), beef (35.3%), chicken (33.3%), and ready-to-eat food (12.9%); the E. coli detection rate for fish and vegetables was <11%. The result showed that the 112 isolates were mostly resistant to tetracycline (52%), followed by ampicillin (42%), compound trimethoprim/sulfamethoxazole (37%), amoxicillin (33%), and nalidixic acid (32%), imipenem resistance was not detected. One hundred isolates carried at least one antimicrobial resistance gene. The detection rate of resistance genes of our study was as follows: tetA (38%), tetB (27%), bla OXA (40%), bla TEM (20%), floR (20%), sul1 (16%), sul2 (27%), aad Ala (19%), aadB (11%), strA (28%), and strB (24%); tetC and bla PSE were not detected. Virulence genes fimC, agg, stx2, fimA, fyuA, papA, stx1, and eaeA were found in 52, 34, 21, 19, 6, 3, 2, and 2 isolates, respectively; papC was not detected. There was a statistically significant association between fimC and resistance to ciprofloxacin (p = .001), gentamicin (p = .001), amikacin (p = .001), levofloxacin (p = .001), and streptomycin (p = .001); between fimA and resistance to tetracycline (p = .001), ampicillin (p = .001), compound trimethoprim/sulfamethoxazole (p = .001), and amoxicillin (p = .003); between agg and resistance to gentamicin (p = .001), tetracycline (p = .001), ciprofloxacin (p = .017), and levofloxacin (p = .001); and between stx2 and resistance to ampicillin (p = .001), tetracycline (p = .001), compound trimethoprim/sulfamethoxazole (p = .002), and amoxicillin (p = .015).

8.
Cell Mol Neurobiol ; 40(8): 1297-1305, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32086669

RESUMO

Autophagy plays a critical role in epileptic neuronal injury, and recent studies have demonstrated that FAM134B plays an important role in regulating autophagy. However, the effect of FAM134B on epileptic neuronal injury remains unclear. In this study, we investigated the role of FAM134B in neuronal apoptosis and endoplasmic reticulum (ER) stress using the hippocampal neuronal culture model of acquired epilepsy (AE) in vitro. We found that in this model, the level of autophagy significantly increased, indicated by an elevated LC3-II/LC3-I ratio. FAM134B overexpression using lentiviral vectors enhanced autophagy, whereas FAM134B downregulation using lentiviral vectors impaired this process. In addition, the ER Ca2+ concentration was decreased and the intracellular level of reactive oxygen species was increased in this model. FAM134B overexpression was sufficient to reverse these changes. Moreover, FAM134B overexpression attenuated ER stress as shown by a decrease in the expression of C/-EBP homologous protein and glucose-regulated protein 78, and neuronal apoptosis induced by seizure, while FAM134B downregulation caused the opposite effects. Further, pre-treatment with the selective autophagy inhibitor 3-methyladenine abolished the effects of FAM134B on ER stress and neuronal apoptosis. Altogether, we demonstrate that FAM134B is an important regulator of AE-induced ER stress and neuronal apoptosis by controlling autophagy function.


Assuntos
Apoptose , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Ratos , Convulsões/metabolismo
9.
Int J Neurosci ; 130(12): 1267-1271, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32064984

RESUMO

Purpose: Krabbe disease (KD) or globoid cell leukodystrophy is an autosomal recessive lysosomal disorder caused by a lack of the lysosomal enzyme galactocerebrosidase (GALC) because of mutations in GALC. Patients with KD exhibit a wide spectrum of clinical symptoms; therefore, their diagnosis can be challenging. We report the clinical features and gene mutations in a 48-year-oldpatient with adult-onset KD.Methods: We collected and analyzed clinical data of the patientwith a diagnosis of KD. Gene mutations were identified by whole exome sequencing.Results: We describe a case of adult-onset KD caused by a novel compound heterozygous mutation; a missense mutation, c. 1901 T > C (p. L634S); and a novel nonsense mutation, c.1005C > G (p. Y335X), in GALC. The disease onset started when the patient was 40 years old, and manifested as typical paralytic paraplegia. Magnetic resonance imaging indicated demyelination of the white matter, which is consistent with the typical symptoms of adult-onset KD. Biochemical analysis revealed GALC activity to be 1.5 nmol/17 h/mg protein, confirming its deficiency and KD diagnosis.Conclusions: Our findings provide evidence of a novel mutation, providing additional information toward to the GALC mutation database.


Assuntos
Galactosilceramidase/genética , Leucodistrofia de Células Globoides/patologia , Idade de Início , Humanos , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/fisiopatologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Sequenciamento do Exoma
10.
Int J Neurosci ; 130(10): 1024-1032, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31933404

RESUMO

PURPOSE: Mitochondrial Ca2+ overload is closely associated with seizure-induced neuronal damage. The mitochondrial calcium uniporter (MCU) plays a crucial role in regulating mitochondrial Ca2+ homeostasis. However, the role of the MCU in seizure-induced neuronal damage remains elusive. Materials and methods: In this study, the hippocampal neuronal culture (HNC) model of acquired epilepsy (AE) was used to investigate the role of the MCU in seizure-induced neuronal injury. Results: We found an increase in mitochondrial Ca2+ concentration in the HNC model of AE. The MCU inhibitor, Ru360, significantly reduced the rate of seizure-induced cell apoptosis and mitochondrial reactive oxygen species (ROS) production; whereas, the MCU agonist, spermine, exacerbated these processes. In addition, Ru360 significantly attenuated seizure-induced endoplasmic reticulum (ER) stress, which is characterized by the expression of glucose-regulated protein 78 (GRP78) and C/-EBP homologous protein (CHOP), while spermine had the opposite effect. We also found that pre-treatment with the mitochondria-targeted antioxidant, mitoquinone, decreased GRP78 and CHOP expression. Moreover, knockdown of CHOP using CHOP-specific small interfering RNA reduced neuronal seizure-induced apoptosis. Conclusions: Taken together, our data indicate that MCU inhibition has a neuroprotective effect against seizure-induced neuronal damage and that this mechanism may involve reduction of ROS-mediated ER stress.


Assuntos
Apoptose/fisiologia , Canais de Cálcio/fisiologia , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Epilepsia/metabolismo , Hipocampo/fisiologia , Mitocôndrias/metabolismo , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Espermina/farmacologia
11.
Sci Rep ; 9(1): 10432, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320706

RESUMO

Retrospective studies have found that left upper lobectomy (LUL) may be a new risk factor for stroke, and the potential mechanism is pulmonary vein thrombosis, which more likely develops in the left superior pulmonary vein (LSPV) stump. The LSPV remaining after left pneumonectomy is similar to that remaining after LUL. However, the association between left pneumonectomy, LUL, and postoperative stroke remains unclear. Thus, we sought to analyze whether both LUL and left pneumonectomy are risk factors for postoperative stroke. We prospectively included consecutive patients who underwent resection between November 2016 and March 2018 at our institution with 6 months of follow-up. Baseline demographic and clinical data were taken. A logistic regression model was used to determine independent predictors of postoperative stroke. In our study, 756 patients who underwent an isolated pulmonary lobectomy procedure were screened; of these, 637 patients who completed the 6-month follow-up were included in the analysis. Multivariable logistic regression analysis adjusted for common risk factors showed that the LUL and left pneumonectomy were independent predictors of stroke (odds ratio, 18.12; 95% confidence interval, 2.12-155.24; P = 0.008). Moreover, diabetes mellitus also was a predictor of postoperative stroke. In conclusion, both LUL and left pneumonectomy are significant risk factors for postoperative stroke.


Assuntos
Pulmão/cirurgia , Pneumonectomia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Acidente Vascular Cerebral/etiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Veias Pulmonares/cirurgia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...