Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 132498, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763232

RESUMO

The development of a thermoplastic, biodegradable composite material to replace conventional polymers derived from petroleum was the main area of concentration. Herein, a method for preparing antibacterial, UV-blocking and degradable CNF/Lignin/PBAT composite films (CLP) using cellulose nanofibrils (CNFs), lignin, and Poly (butylene adipate-terephthalate) (PBAT) as raw materials by solution casting method was described. With the adding of PBAT, the thermal stability, thermoplastic, mechanical properties were enhanced by improving the compatibility between components. The maximum tensile strength of CLP could reach 189.72 MPa, which increased 25.5 % compared to CNF/Lignin film. The average initial decomposition temperature could reach 321 °C, which much higher than that of CNF and lignin. At the same time, it holds good heat-sealing performance made it suitable for practical use. Meanwhile, the composite films had excellent UV resistance and could block over 95 % of UV light. The antibacterial results indicated that the films had a good inhibitory effect on E. coli and S. aureus, with a maximum inhibitory ring diameter of 5.56 and 6.36 mm. In addition, the composite film also had excellent barrier capability to liquid and gas. The prepared film had potential to produce flexible packing, industrial compositing and biomedical fields.

2.
Carbohydr Polym ; 314: 120929, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173010

RESUMO

High conductive and transparent hydrogels with adhesion function are ideal candidates for soft electronic devices. However, it remains a challenge to design appropriate conductive nanofillers to endow hydrogels with all these characteristics. The 2D MXene sheets are promising conductive nanofillers for hydrogels due to excellent electricity and water-dispersibility. However, MXene is quite susceptible to oxidation. In this study, polydopamine (PDA) was employed to protect the MXene from oxidation and meanwhile endow hydrogels with adhesion. However, PDA coated MXene (PDA@MXene) were easily flocculated from dispersion. 1D cellulose nanocrystals (CNCs) were employed as steric stabilizers to prevent the agglomeration of MXene during the self-polymerization of dopamine. The obtained PDA coated CNC-MXene (PCM) sheets display outstanding water-dispersible and anti-oxidation stability and are promising conductive nanofillers for hydrogels. During the fabrication of polyacrylamide hydrogels, the PCM sheets were partially degraded into PCM nanoflakes with smaller size, leading to transparent PCM-PAM hydrogels. The PCM-PAM hydrogels can self-adhere to skin, and possess high transmittance of 75 % at 660 nm, superior electric conductivity of 4.7 S/m with MXene content as low as 0.1 % and excellent sensitivity. This study will facilitate the development of MXene based stable, water-dispersible conductive nanofillers and multi-functional hydrogels.

3.
ACS Appl Mater Interfaces ; 15(14): 18262-18271, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37002947

RESUMO

A flexible wearable temperature sensor is a novel electronic sensor that can monitor real-time changes in human body temperature in a variety of application scenarios and is regarded as the "crown jewel" of information collection technology. Although flexible strain sensors based on hydrogels have excellent self-healing effects and mechanical durability, their widespread application is still limited by external power sources. Herein, a novel self-energizing hydrogel was developed by embellishing cellulose nanocrystals (CNC) with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The resultant thermoelectrically conductive CNC was then employed as a booster for poly(vinyl alcohol) (PVA)/borax hydrogels. The obtained hydrogels exhibit remarkable self-healing performance (92.57%) and exceptional stretchability (989.60%). Additionally, the hydrogel was capable of accurately and reliably identifying human motion. Most importantly, it exhibits excellent thermoelectric performance, capable of generating stable and reproducible voltages. It shows a large Seebeck coefficient of 1.31 mV k-1 at ambient temperatures. When subjected to a temperature difference of 25 K, the output voltage reaches 31.72 mV. CNC-PEDOT:PSS/PVA conductive hydrogel is multifunctional with self-healing, self-powering, and temperature sensing, which has the potential to be used for the preparation of intelligent wearable temperature-sensing devices.


Assuntos
Alcanossulfonatos , Celulose , Humanos , Temperatura , Condutividade Elétrica , Hidrogéis
4.
Int J Biol Macromol ; 235: 123830, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36842743

RESUMO

Protection coatings with self-healing ability can significantly enhance their anti-corrosion properties and service life. In this study, self-healing waterborne polyurethane (WPU) coatings with high transparence and haze were facile fabricated via cellulose nanocrystal (CNC) stabilized linseed oil (LO) Pickering emulsion. Sustainable CNCs displayed outstanding emulsifying ability and stability to stabilize LO Pickering emulsion. The size of LO Pickering emulsion droplets decreases with the CNC concentration, while the emulsion fraction and surface coverage by CNCs increase with CNC concentration, leading to a more stable Pickering emulsion. The self-healing rates of WPU coatings at varied time, temperature, CNC and catalyst concentration were investigated. Higher temperature, larger emulsion droplets, and with driers employed as catalysts generally lead to faster self-healing rate. The WPU self-healing coatings displayed much better abrasion resistance and mechanical properties than pristine WPU due to the incorporation of CNCs. Moreover, the WPU self-healing coatings show a high transparence and haze due to light scattering, and their applications as coatings of lamp covers and glass to achieve uniform light distribution and privacy protection with high light transmission were further demonstrated.


Assuntos
Celulose , Nanopartículas , Celulose/química , Óleo de Semente do Linho , Poliuretanos , Emulsões/química , Nanopartículas/química
5.
Chemosphere ; 286(Pt 1): 131541, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34293565

RESUMO

To effectively degrade organic pollutants in wastewater, visible-light-driven Bi2MoO6/PPy hierarchical heterogeneous photocatalysts were prepared through a solvothermal method and the following in-situ chemical oxidation polymerization. Compared with pristine Bi2MoO6 photocatalyst, the composite photocatalysts exhibited dramatically improved photocatalytic activity and photostability towards the degradation of methylene blue dye and tetracycline antibiotic. Bi2MoO6/PPy-80 sample achieved the highest photocatalytic degradation rates for methylene blue dye (93.6%) and tetracycline antibiotic (88.3%) under visible light irradiation. These two organic pollutants could be completely degraded into nontoxic small molecules according to in-depth HPLC-MS analysis of degradation products. The transient photocurrent responses, electrochemical impedance spectra, and photoluminescence spectra demonstrated that the introduction of PPy nanoparticles on the surface of Bi2MoO6 nanosheets could effectively accelerate the separation of photo-generated electron-hole pairs. Furthermore, a possible synergetic photocatalytic mechanism was put forward based on the electron spin resonance and XPS valence-band spectra. This work indicated that construction of hierarchical composite photocatalysts combining polypyrrole conductive polymer and Bi2MoO6 semiconductor in nanoscale is an efficient approach to improve photocatalytic activity for environmental remediation.


Assuntos
Poluentes Ambientais , Polímeros , Bismuto , Catálise , Descontaminação , Microesferas , Molibdênio , Pirróis
6.
Carbohydr Polym ; 276: 118766, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823786

RESUMO

The crystal structures of cellulose nanomaterials play an important role in their morphologies and applications, however, there was still lacking systematic research on preparing various crystalline allomorphs of cellulose nanocrystals with high thermal stability. Herein, the efficient synthesis route was presented to design various crystalline allomorphs of cellulose from cotton. And then, cellulose nanocrystals with different crystal structures (CNC-I, CNC-II, CNC-IIIII, CNC-IVII) were prepared by hydrogen peroxide hydrolysis of resultant cellulose. Overall, needle-like CNC-I (length of 180 ± 25 nm, diameter of 12 ± 2 nm), near-spherical CNC-II (diameter of 101 ± 12 nm), and spherical CNC-IIIII (diameter of 22 ± 3 nm) and CNC-IVII (diameter of 21 ± 2 nm) all exhibited remarkable dispersibility and thermal stability (Tmax > 357 °C). This work provides a simple and low-cost synthesis route for various crystalline allomorphs of CNCs with high thermal stability from the same raw materials (cotton).

7.
ACS Appl Mater Interfaces ; 13(34): 40953-40963, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406736

RESUMO

"Green" solvent-dissolved cellulose enables functional reuse of waste cotton fabrics. This work will not only achieve high-value utilization of biomass but also overcome microplastic pollution. There is a significant challenge in the continuous meter-scale synthesis of sensing fibers for commercial applications with high productivity. Herein, waste cellulose fabrics was recycled by the NaOH/urea system to produce regenerated cellulose (RC) and then cornlike polyaniline (PANI) was anchored on the RC fibers by in situ polymerization of aniline through continuous meter-scale wet-spinning. In our findings, the morphologies and possible growth of PANI layers on the RC surface can be tailored by various ammonium persulfate (APS) contents in a coagulation bath. Especially, composite fibers (PC0.5) exhibited superior electrical conductivity and highly sensitive responsiveness to organic vapors and human motions including exhalation/inhalation, finger, and wrist joints. Further, the possible sensing mechanism of cornlike PC0.5 has been proposed, and its GF value is 23.8. This study realized the conversion from cheap waste fibers to high-value conductive fibers with excellent performances for multifunctional wearable sensors and energy devices via a simple and "green" method.

8.
Carbohydr Polym ; 254: 117481, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357932

RESUMO

The intrinsic intermittence of solar energy raises the necessity for thermal energy storage (TES) systems to balance the contradiction between energy supply and demand energy. This work experimentally provides solid-liquid phase change materials (PCMs) with sufficient storage capacity and discharging rate to offer heating for agriculture products by enhancing heat transfer in phase change fiber composites (PCF). To achieve this, we prepared dipole responsive magnetic/solar-driven PCF composites reinforced with magnetic cellulose nanocrystals hybrids (MCNC). The obtained PCF/MCNC-5% showed excellent magnetic property with a saturation magnetization (MS) value of 1.3 emu/g and effective latent heat phase change enthalpies of 69.2 ± 3.5 J/g - 83.1 ± 4.2 J/g. More importantly, PCF/MCNC-5% showed robust high magnetic to thermal energy storage efficiency of 32.5 % and solar light accelerated energy storage efficiency of 58.5 %. These advantages make the PCF composites promising and more desirable for drying and preservation of the fruits and other agriculture products.

9.
Int J Biol Macromol ; 155: 330-339, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32229207

RESUMO

Double stimuli-responsive functionalized cellulose nanocrystal-poly[2-(dimethylamino)ethyl methacrylate] (CNC-g-PDMAEMA) reinforced poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) electrospun composite membranes were explored as drug delivery vehicles using tetracycline hydrochloride (TH) as a model drug. It was found that rigid CNC-g-PDMAEMA nanoparticles enhanced thermal, crystallization and hydrophilic properties of PHBV. Moreover, great improvements in fiber diameter uniformity, crystallization ability and maximum decomposition temperature (Tmax) could be achieved at 6 wt% CNC-g-PDMAEMA. Furthermore, by introducing stimuli-responsive CNC-g-PDMAEMA nanofillers, intelligent and long-term sustained release behavior of composite membranes could be achieved. The releasing mechanism of composite membranes based on zero order, first order, Higuchi and Korsmeyere-Peppas mathematical models was clearly demonstrated, giving effective technical guidance for practical drug delivery systems.


Assuntos
Celulose/química , Liberação Controlada de Fármacos , Metacrilatos/química , Nanocompostos/química , Nanopartículas/química , Nylons/química , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Membranas/química , Modelos Teóricos , Temperatura
10.
ACS Appl Mater Interfaces ; 11(9): 9367-9373, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735345

RESUMO

Cellulose nanofibers (CNFs) aerogels with controllable surface wettability were prepared by grafting poly( N, N-dimethylamino-2-ethyl methacrylate) (PDMAEMA) polymer brushes via surface-initiated atom-transfer radical polymerization. After grafting PDMAEMA polymer, the surface of the aerogel was hydrophobic. However, in the presence of CO2, the surface of the aerogel gradually changes from hydrophobic to hydrophilic. The porous structure and CO2-responsiveness of PDMAEMA brushes within the CNFs aerogels allowed for the on-off switching of the oil-water mixture separation process. These CNFs aerogels were recyclable and displayed attractive separation efficiency for oil-water mixture and surfactant-stabilized emulsions. Furthermore, the switchable surface wettability holds an advantage of avoiding oil-fouling, which will greatly improve its recyclability.

11.
ACS Appl Mater Interfaces ; 10(33): 27831-27839, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30052426

RESUMO

In this present work, a thermoresponsive and recyclable catalytic system was prepared by grafting poly( N-isopropylacrylamide)- co-poly(glycidyl methacrylate) (PNIPAM- co-PGM) to a cellulose sponge, which was reinforced by polydopamine (PDA) and (3-aminopropyl)triethoxysilane (APTMS). Au nanoparticles (Au NPs) were loaded via in situ reduction of HAuCl4 with PDA. Fourier transform infrared, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis results revealed that the Au NPs (<10 nm) were homogenously dispersed on the surface of the sponge. Catalytic experiments with sponges prepared without PNIPAM- co-PGM demonstrated an increased reaction rate when the temperature of the reaction medium was elevated. However, in the presence of PNIPAM-i co-PGM in the sponges, the reaction rate was decreased when the reaction temperature was higher than the lower critical solution temperature of the polymer. The sponge could be conveniently separated from the reactions and reused up to 22 cycles.

12.
ACS Appl Mater Interfaces ; 9(20): 17155-17162, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28471160

RESUMO

Robust and flexible cellulose sponges were prepared by dual-cross-linking cellulose nanofiber (CNF) with γ-glycidoxypropyltrimethoxysilane (GPTMS) and polydopamine (PDA) and used as carriers of metal nanoparticles (NPs), such as palladium (Pd). In situ growth of Pd NPs on the surface of CNF was achieved in the presence of polydopamine (PDA). The modified sponges were characterized with FT-IR, XRD, EDX, SEM, TEM, and TGA. XRD, EDX, and TEM results revealed that the Pd NPs were homogeneously dispersed on the surface of CNF with a narrow size distribution. The catalysts could be successfully applied to heterogeneous Suzuki and Heck cross-coupling reactions. Leaching of Pd was negligible and the catalysts could be conveniently separated from the products and reused.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...