Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547622

RESUMO

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliais da Veia Umbilical Humana , Óxido Nítrico Sintase Tipo III , Transdução de Sinais , Trombospondina 1 , Animais , Humanos , Antraquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Ratos , Camundongos , Ratos Sprague-Dawley , Endotélio Vascular/efeitos dos fármacos , Glucose/metabolismo , Camundongos Endogâmicos C57BL
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 270-279, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38282474

RESUMO

Previous studies have shown that puerarin plays a key role in protecting humans and animals from cardiovascular diseases. The exact mechanism of the therapeutic effect of puerarin on various cardiovascular diseases (protective effect on cardiomyocytes) is still unclear. In the present study, we identify the role of puerarin in an animal model of experimental heart failure (HF) and explore its underlying mechanisms. The HF rat model is induced by intraperitoneal injection of adriamycin (ADR), and puerarin is administered intragastrically at low, medium, and high concentrations. We demonstrate that puerarin significantly improves myocardial fibrosis and inflammatory infiltration and, as a result, improves cardiac function in ADR-induced HF rats. Mechanistically, we find for the first time that puerarin inhibits overactivated Na +/H + exchange isoform 1 (NHE1) in HF, which may improve HF by decreasing Na + and Ca 2+ ion concentrations and attenuating mitochondrial damage caused by calcium overload; on the other hand, puerarin inhibits the activation of the p38 pathway in HF, reduces the expressions of TGF-ß and proinflammatory cytokines, and suppresses myocardial fibrosis. In conclusion, our results suggest that Puerarin is an effective drug against HF and may play a protective role in the myocardium by inhibiting the activation of p38 and its downstream NHE1.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Insuficiência Cardíaca , Isoflavonas , Humanos , Ratos , Animais , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Cardiomiopatias/metabolismo , Fibrose
3.
Life Sci ; 339: 122382, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154610

RESUMO

AIMS: Endothelial dysfunction (ED) is the initial cause of atherosclerosis (AS) and an early marker of many cardiovascular diseases (CVD). Citronellal (CT), a monoterpenoid natural product extracted from grass plant Citronella, has been shown to have anti-thrombotic, anti-hypertensive and anti-diabetic cardiomyopathy activities. The aim of this study is to investigate the effects of citronellal on vascular endothelial dysfunction and the underlying mechanisms. MATERIALS AND METHODS: The left common carotid artery was subjected to one-time balloon injury to cause vascular endothelial injury, and the AS model was established by feeding with high-fat diet. Use of HUVECs H2O2 treatment induced HUVECs oxidative stress damage model. The blood lipid level, histopathology, Western blot, immunohistochemistry, RT-PCR, ELISA and in situ fluorescence hybridization of common carotid artery tissues and HUVECs were studied. KEY FINDINGS: CT significantly reduced vascular plate area and endothelial lipid and cholesterol deposition in the common carotid artery of mice in a dose-dependent manner. CT increased the expression of activated protein 2α (AP-2α/TFAP2A) and circRNA_102979, and inhibited the ectopic expression level of miR-133a. However, the constructed lentivirus with AP-2α silencing and circRNA_102979 silencing reversed this phenomenon. SIGNIFICANCE: The current study verifies CT can increase the expression levels of AP-2α and circRNA_102979 in vascular endothelium, increase the adsorption effect of circRNA_102979 on miR-133a and relieve the inhibitory effect of miR-133a on target genes, thereby alleviating AS-induced ED.


Assuntos
Monoterpenos Acíclicos , Aldeídos , Aterosclerose , MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , RNA Circular , Peróxido de Hidrogênio , Aterosclerose/metabolismo , Lipídeos , Apoptose
4.
Metabolites ; 12(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736412

RESUMO

Ellagic acid (EA) is a polyphenol dilactone that has been reported to have antipyretic, anti-inflammatory, anti-tumor, and antioxidant activities, but the mechanism of action has not been reported. In this study, serum metabolomics was used to explore the mechanism of EA on rat fever induced by beer yeast, and to screen out marker metabolites to provide a reference for the antipyretic effect of EA. The acute fever model of male Sprague Dawley rats involved subcutaneous injection with 20% aqueous suspension of yeast (15 mL/kg) in their back. At the same time of modeling, EA was given orally by 10 mL/kg intragastric administration for treatment. During the experiment, the temperature and its change values of rats were recorded, and Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), Prostaglandin E2 (PGE2), Cyclic Adenosine Monophosphate (cAMP), Superoxide Dismutase (SOD) and Malondialdehyde (MDA)­six physiological and biochemical indexes of rats­were detected after the experiment. In addition, the hypothalamus of each rat was analyzed by Western blot (WB), and the levels of Phospho Nuclear Factor kappa-B (P-NF-κB P65) and IkappaB-alpha (IKB-α) were detected. Then, the serum metabolites of rats in each group were detected and analyzed by gas chromatograph mass spectrometry and the multivariate statistical analysis method. Finally, when screening for differential metabolites, the potential target metabolic pathway of drug intervention was screened for through the enrichment analysis of differential metabolites. Pearson correlation analysis was used to systematically characterize the relationship between biomarkers and pharmacodynamic indicators. EA could reduce the temperature and its change value in yeast induced fever rats after 18 h (p < 0.05). The level of IL-6, TNF-α, PGE2, cAMP, SOD and MDA of the Model group (MG) increased significantly compared to the Normal group (NG) (p < 0.001) after EA treatment, while the levels of the six indexes in the serum and cerebrospinal fluid of yeast-induced rats decreased. The administration of yeast led to a significant increase in Hypothalamus P-NF-κB P65 and IKB-α levels. Treatment with EA led to a significant decrease in P-NF-κB P65 levels. Moreover, combined with VIP > 1 and p < 0.05 as screening criteria, the corresponding retention time and characteristic mass to charge ratio were compared with the NIST library, Match score > 80%, and a total of 15 differential metabolites were screened. EA administration significantly regulated 9 of 15 metabolites in rat serum. The 15 differential metabolites involved linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, galactose metabolism, biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Pharmacodynamic correlation analysis was conducted between 15 different metabolites and six detection indexes. There was a significant correlation between 13 metabolites and six detection indexes. D-(−)-lactic acid, glycerin, phosphoric acid, 5-oxo-L-proline were negatively correlated with TNF-α, and p values were statistically significant except for L-tyrosine. In addition, glycerin was negatively correlated with IL-6, PGE2 and MDA, while phosphoric acid was negatively correlated with IL-6. In conclusion, EA may play an antipyretic anti-inflammatory role through the inhibition of the IKB-α/NF-κB signaling pathway and five metabolic pathways, which may contribute to a further understanding of the therapeutic mechanisms of the fever of EA.

5.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458665

RESUMO

Fever is caused by an increase in the heat production process when the body is under the action of a heat source or the dysfunction of the temperature center. Ellagic acid (EA) is a polyphenol dilactone that has anti-inflammatory, anti-tumor, and antioxidant activities. Male Sprague-Dawley rats were injected yeast to reproduce an experimental fever model (150 ± 20 g), and the rectal temperature and its change values were subsequently taken 19 h later; the excessive production of interleukin-1ß (IL-1ß) and prostaglandin2 (PGE2) induced by yeast was regulated to normal by EA administration. Rat brain metabolomics investigation of pyrexia and the antipyretic anti-inflammatory effect of EA was performed using Ultra-High-Performance Liquid Chromatography-Mass spectrometry (UPLC-MS). Twenty-six metabolites, as potential biomarkers, significantly altered metabolites that were found in pyretic rats, and eleven metabolites, as biomarkers of the antipyretic mechanism of EA, were significantly adjusted by EA to help relieve pyrexia, which was involved in glycerophospholipid metabolism and sphingolipid metabolism, etc. In conclusion, potential metabolic biomarkers in the brain shed light on the mechanism of EA's antipyretic effects, mainly involving metabolic pathways, which may contribute to a further understanding of the therapeutic mechanisms of fever and therapeutic mechanism of EA.


Assuntos
Antipiréticos , Medicamentos de Ervas Chinesas , Animais , Anti-Inflamatórios/farmacologia , Antipiréticos/farmacologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cromatografia Líquida , Medicamentos de Ervas Chinesas/farmacologia , Ácido Elágico/farmacologia , Ácido Elágico/uso terapêutico , Febre/tratamento farmacológico , Febre/metabolismo , Masculino , Metabolômica , Ratos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
6.
Zhongguo Zhen Jiu ; 38(1): 51-4, 2018 Jan 12.
Artigo em Chinês | MEDLINE | ID: mdl-29354937

RESUMO

OBJECTIVE: To explore the repair effects of acupuncture for promoting the governor vessel and tranquilizing the mind (acupuncture technique) on cerebral white matter injury of premature infants. METHODS: A total of 56 cases of cerebral whiter matter injury of premature infants, the fetal age less than 35 weeks were selected and randomized into an observation group (27 cases) and a control group (29 cases). The routine basic rehabilitation therapy was used in the two groups. Additionally, in the observation group, the acupuncture technique was added, once a day and the treatment for 15 days was as 1 course. Totally, 3 courses of treatment were required. Before and after treatment, the cranial magnetic resonance imaging (MRI) and the diffusion tensor imaging (DTI) were adopted to observe the location and severity of cerebral white matter injury. The Gesell developmental scale was used to assess the nerve motor development. RESULTS: After treatment, the difference was not significant statistically in the severity of cerebral white matter injury in the infants between the two groups (P>0.05). The FA value of cerebral white matter in the interesting zone was increased as compared with that before treatment in the infants of the two groups (both P<0.05). The result in the observation group was higher than that in the control groups (P<0.05). After treatment, DQ value of each function zone in Gesell scale was all increased as compared with that before treatment in the two groups (all P<0.05). After treatment, the DQ values of gross motor, fine motor and social adaptability in the observation group were higher than those in the control group (all P<0.05). After treatment, the difference was not significant in DQ value of individual-social and speech behaviors between the two groups (both P>0.05). CONCLUSION: Acupuncture technique for promoting the governor vessel and tranquilizing the mind promotes the repair of the function in the premature infants with cerebral white matter injury and further benefits the promotion of the intelligence.


Assuntos
Terapia por Acupuntura , Lesões Encefálicas/terapia , Recém-Nascido Prematuro , Substância Branca/lesões , Lesões Encefálicas/reabilitação , Imagem de Tensor de Difusão , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...