Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Food Sci Nutr ; 12(5): 3452-3460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726445

RESUMO

Probiotics are widely used in food for their health benefits to the host. Inactivated probiotics also reportedly improve the intestinal environment and immune regulation. Our previous studies showed that heat-killed Lacticaseibacillus paracasei MCC1849 (hk-MCC1849) effectively induced IL-12 production in mouse spleen cells and significantly reduced cold symptoms in clinical trial subjects. To further elucidate the mechanism of host immune regulation by hk-MCC1849, human peripheral blood mononuclear cells (PBMCs) were cocultured with hk-MCC1849. The Toll-like receptor 9 ligands CpG-ODN 2216 and hk-MCC1849 and the heat-killed Lacticaseibacillus rhamnosus ATCC53103 were used as positive and negative controls, respectively. The results showed that, compared with the control, hk-MCC1849 significantly increased the expression of the plasmacytoid dendritic cell (pDC) marker CD86 (p < .0001) and the pDC marker HLA-DR (p < .001) in PBMCs. The expression levels of the IL-12p40, IFNα, IFNα1, IFNγ, and ISG15 genes were significantly increased after coculture with hk-MCC1849 (p < .05, p < .05, p < .05, p < .05, and p < .05, respectively, vs. control). Furthermore, to confirm whether hk-MCC1849 directly interacted with pDCs, DCs were enriched with PBMCs following 24 h of coculture with hk-MCC1849. Phagocytosis of fluorescently labeled hk-MCC1849 by pDCs was observed, and there were significant increases in CD86 (p < .05) and HLA-DR (p < .0001) expression in pDCs. These results suggest that hk-MCC1849 exerts a potential immunomodulatory effect on the host through the activation of peripheral pDCs.

2.
Chemphyschem ; : e202300880, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705870

RESUMO

Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000 pN, at a loading rate of 3×104 pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.

3.
Insects ; 15(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667413

RESUMO

Nutrients consumed during the adult stage are a key factor affecting the growth, development, and reproduction of insect offspring and thus could play an important role in insect population research. However, there is absence of conclusive evidence regarding the direct effects of parental (F0) nutritional status on offspring (F1) fitness in insects. Carposina sasakii Matsumura is a serious, widespread fruit-boring pest that negatively impacts orchards and the agricultural economy across East Asia. In this study, life history data of F1 directly descended from F0C. sasakii fed with seven different nutrients (water as control, 5 g·L-1 honey solution, 10 g·L-1 honey solution, 5 g·L-1 sucrose solution, 10 g·L-1 sucrose solution, 15 g·L-1 sucrose solution, and 20 g·L-1 sucrose solution) were collected under laboratory conditions. The growth and development indices, age-stage specific survival rate, age-stage specific fecundity, age-stage specific life expectancy, age-stage specific reproductive value, and population parameters of these offspring were analyzed according to the age-stage, two-sex life table theory. The results showed that the nutritional status of F0 differentially affects the growth, development, and reproduction of F1. The F1 offspring of F0 adult C. sasakii fed with 10 g·L-1 sucrose had significantly higher life table parameters than those of other treatments (intrinsic rate of increase, r = 0.0615 ± 0.0076; finite rate of increase, λ = 1.0634 ± 0.0081; net reproductive rate, R0 = 12.61 ± 3.57); thus, 10 g·L-1 sucrose was more suitable for raising C. sasakii in the laboratory than other treatments. This study not only provides clear evidence for the implications of altering F0 nutritional conditions on the fitness of F1 in insects, but also lays the foundation for the implementation of feeding technologies within the context of a well-conceived laboratory rearing strategy for C. sasakii.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38625780

RESUMO

Recent advancements in pre-trained language-image models have ushered in a new era of visual comprehension. Leveraging the power of these models, this paper tackles two issues within the realm of visual analytics: (1) the efficient exploration of large-scale image datasets and identification of data biases within them; (2) the evaluation of image captions and steering of their generation process. On the one hand, by visually examining the captions generated from language-image models for an image dataset, we gain deeper insights into the visual contents, unearthing data biases that may be entrenched within the dataset. On the other hand, by depicting the association between visual features and textual captions, we expose the weaknesses of pre-trained language-image models in their captioning capability and propose an interactive interface to steer caption generation. The two parts have been coalesced into a coordinated visual analytics system, fostering the mutual enrichment of visual and textual contents. We validate the effectiveness of the system with domain practitioners through concrete case studies with large-scale image datasets.

6.
Chemistry ; : e202400566, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642049

RESUMO

The prosperity of the lithium-ion battery market is inevitably accompanied by the depletion of corresponding resources and the accumulation of spent batteries in a dialectical manner. Spent lithium-ion batteries are harboring the characteristics of hazardous waste and high-value resources, so efficient recycling is of great significance. The cathode material is considered as an interesting target for repurposing. Despite some important reviews give commendable emphasis to recycling technologies, there is still a dearth of exploration of recycling mechanisms. This deficiency of awareness highlights the need for further research and development in this area. This review aims to systematically review and thoroughly discuss the reduction reaction mechanism of each method regarding different cathode materials. And systematically digest the selection of reducing agent and the effect of reduction reaction on material regeneration are systematically digested, as well as the impact of the reduction reaction on the regeneration of materials. This review emphasizes the importance of balancing efficiency, economic and environmental benefits in reuse technologies. Finally, the review proposes an outlook on the opportunities and challenges facing the reuse of key materials for next-generation spent batteries aimed at promoting the green and sustainable development of lithium-ion batteries, circular economy and ecological balance.

7.
ACS Appl Mater Interfaces ; 16(17): 21546-21556, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626342

RESUMO

Radiodynamic therapy (RDT) has emerged as a promising modality for cancer treatment, offering notable advantages such as deep tissue penetration and radiocatalytic generation of oxygen free radicals. However, the oxygen-dependent nature of RDT imposes limitations on its efficacy in hypoxic conditions, particularly in modulating and eliminating radioresistant immune suppression cells. A novel approach involving the creation of a "super" tetrahedron polyoxometalate (POM) cluster, Fe12-POM, has been developed for radiation boosted chemodynamic catalysis to enable oxygen-independent RDT in hypoxic conditions. This nanoscale cluster comprises four P2W15 units functioning as energy antennas, while the Fe3 core serves as an electron receptor and catalytic center. Under X-ray radiation, a metal-to-metal charge transfer phenomenon occurs between P2W15 and the Fe3 core, resulting in the valence transition of Fe3+ to Fe2+ and a remarkable 139-fold increase in hydroxyl radical generation compared to Fe12-POM alone. The rapid generation of hydroxyl radicals, in combination with PD-1 therapy, induces a reprogramming of the immune environment within tumors. This reprogramming is characterized by upregulation of CD80/86, downregulation of CD163 and FAP, as well as the release of interferon-γ and tumor necrosis factor-α. Consequently, the occurrence of abscopal effects is facilitated, leading to significant regression of both local and distant tumors in mice. The development of oxygen-independent RDT represents a promising approach to address cancer recurrence and improve treatment outcomes.


Assuntos
Microambiente Tumoral , Animais , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Oxigênio/química , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Linhagem Celular Tumoral
9.
Environ Sci Technol ; 58(12): 5442-5452, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478878

RESUMO

New particle formation and growth greatly influence air quality and the global climate. Recent CERN Cosmics Leaving OUtdoor Droplets (CLOUD) chamber experiments proposed that in cold urban atmospheres with highly supersaturated HNO3 and NH3, newly formed sub-10 nm nanoparticles can grow rapidly (up to 1000 nm h-1). Here, we present direct observational evidence that in winter Beijing with persistent highly supersaturated HNO3 and NH3, nitrate contributed less than ∼14% of the 8-40 nm nanoparticle composition, and overall growth rates were only ∼0.8-5 nm h-1. To explain the observed growth rates and particulate nitrate fraction, the effective mass accommodation coefficient of HNO3 (αHNO3) on the nanoparticles in urban Beijing needs to be 2-4 orders of magnitude lower than those in the CLOUD chamber. We propose that the inefficient uptake of HNO3 on nanoparticles is mainly due to the much higher particulate organic fraction and lower relative humidity in urban Beijing. To quantitatively reproduce the observed growth, we show that an inhomogeneous "inorganic core-organic shell" nanoparticle morphology might exist for nanoparticles in Beijing. This study emphasized that growth for nanoparticles down to sub-10 nm was largely influenced by their composition, which was previously ignored and should be considered in future studies on nanoparticle growth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Nitratos , Monitoramento Ambiental , Poluição do Ar/análise , Compostos Orgânicos , Tamanho da Partícula
10.
Front Biosci (Landmark Ed) ; 29(3): 100, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38538277

RESUMO

BACKGROUND: As a dedifferentiated tumor, small cell endometrial neuroendocrine tumors (NETs) are rare and frequently diagnosed at an advanced stage with a poor prognosis. Current treatment recommendations are often extrapolated from histologically similar tumors in other sites or based on retrospective studies. The exploration for diagnostic and therapeutic markers in small cell NETs is of great significance. METHODS: In this study, we conducted single-cell RNA sequencing on a specimen obtained from a patient diagnosed with small cell endometrial neuroendocrine carcinoma (SCNEC) based on pathology. We revealed the cell map and intratumoral heterogeneity of the cancer cells through data analysis. Further, we validated the function of ISL LIM Homeobox 1 (ISL1) in vitro in an established neuroendocrine cell line. Finally, we examined the association between ISL1 and tumor staging in small cell lung cancer (SCLC) patient samples. RESULTS: We observed the significant upregulation of ISL1 expression in tumor cells that showed high expression of the neuroepithelial markers. Additionally, in vitro cell function experiments demonstrated that the high ISL1 expression group exhibited markedly higher cell proliferation and migration abilities compared to the low expression group. Finally, we showed that the expression level of ISL1 was correlated with SCLC stages. CONCLUSIONS: ISL1 protein in NETs shows promise as a potential biomarker for diagnosis and treatment.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Feminino , Humanos , Fatores de Transcrição/genética , Estudos Retrospectivos , Análise da Expressão Gênica de Célula Única , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/análise , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Endométrio/química , Endométrio/metabolismo , Endométrio/patologia , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/terapia
11.
PeerJ ; 12: e16876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500533

RESUMO

Background & Aims: Small nuclear ribonucleoprotein U1 subunit 70 (SNRNP70) as one of the components of the U1 small nuclear ribonucleoprotein (snRNP) is rarely reported in cancers. This study aims to estimate the application potential of SNRNP70 in hepatocellular carcinoma (HCC) clinical practice. Methods: Based on the TCGA database and cohort of HCC patients, we investigated the expression patterns and prognostic value of SNRNP70 in HCC. Then, the combination of SNRNP70 and alpha-fetoprotein (AFP) in 278 HCC cases was analyzed. Next, western blotting and immunohistochemistry were used to detect the expression of SNRNP70 in nucleus and cytoplasm. Finally, Cell Counting Kit-8 (CCK-8) and scratch wound healing assays were used to detect the effect of SNRNP70 on the proliferation and migration of HCC cells. Results: SNRNP70 was highly expressed in HCC. Its expression was increasingly high during the progression of HCC and was positively related to immune infiltration cells. Higher SNRNP70 expression indicated a poor outcome of HCC patients. In addition, nuclear SNRNP70/AFP combination could be a prognostic biomarker for overall survival and recurrence. Cell experiments confirmed that knockdown of SNRNP70 inhibited the proliferation and migration of HCC cells. Conclusion: SNRNP70 may be a new biomarker for HCC progression and HCC diagnosis as well as prognosis. SNRNP70 combined with serum AFP may indicate the prognosis and recurrence status of HCC patients after operation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , alfa-Fetoproteínas/genética , Neoplasias Hepáticas/genética , Relevância Clínica , Biomarcadores Tumorais/genética , Ribonucleoproteínas Nucleares Pequenas , Ribonucleoproteína Nuclear Pequena U1
12.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543473

RESUMO

Bioleaching has gained significant attention as a cost-effective and environmentally friendly approach for extracting metals from low-grade ores and industrial byproducts. The application of acidophiles in bioleaching has been extensively studied. Among the various mechanisms leaching microorganisms utilize, quorum sensing (QS) is pivotal in regulating their life activities in response to population density. QS has been confirmed to regulate bioleaching, including cell morphology, community structure, biofilm formation, and cell metabolism. Potential applications of QS have also been proposed, such as increasing mineral leaching rates by adding signaling molecules. This review is helpful for comprehensively understanding the role of QS in bioleaching and promoting the practical application of QS-based strategies in bioleaching process optimization.

13.
JACS Au ; 4(2): 384-401, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425935

RESUMO

Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.

14.
Angew Chem Int Ed Engl ; 63(20): e202319849, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38439625

RESUMO

Glycans on tumor cell surface have significant impacts in the immune-killing process. Here an ultra-galactocation to sialic acid (Sia) strategy is designed to hugely introduce galactose (Gal) to Sia and on tumor cells in vivo by using a penta-functional dendritic probe (Den@5F), which efficiently enhances the immune-killing of tumor cells. The Den@5F contains five different kinds of functional groups, including Gal, Cy5, amino, phenylboronic acid (PBA) and 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butanoate (mNB), which can be conveniently prepared through a two-step reaction. After injecting into the tumor-bearing mouse, Den@5F can efficiently block Sia through the specific recognition between PBA and Sia on tumor cells and hugely introduce Gal through the subsequent photo-crosslinking between mNB and amino groups to multiply conjugate excessive Den@5Fs. The comprehensively blocked Sia can prevent the immune escape, and the hugely introduced Gal can promote the immune stimulation of the immune cells, which lead to an efficient enhancement of the immune-killing. The proposed strategy provides a significant and promising tool to promote the clinical immunotherapy of tumor.


Assuntos
Galactose , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Humanos , Animais , Camundongos , Galactose/química , Linhagem Celular Tumoral , Dendrímeros/química , Dendrímeros/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia
15.
BMC Plant Biol ; 24(1): 94, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326748

RESUMO

BACKGROUND: Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT: In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION: The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.


Assuntos
Liriodendron , Liriodendron/genética , Melhoramento Vegetal , Fatores de Transcrição/genética , Ácidos Indolacéticos/metabolismo , Genômica , Regulação da Expressão Gênica de Plantas , Técnicas de Embriogênese Somática de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Cell Discov ; 10(1): 24, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409220

RESUMO

Inflammasome activation and pyroptotic cell death are known to contribute to the pathogenesis of cardiovascular diseases, such as myocardial ischemia-reperfusion (I/R) injury, although the underlying regulatory mechanisms remain poorly understood. Here we report that expression levels of the E3 ubiquitin ligase membrane-associated RING finger protein 2 (MARCH2) were elevated in ischemic human hearts or mouse hearts upon I/R injury. Genetic ablation of MARCH2 aggravated myocardial infarction and cardiac dysfunction upon myocardial I/R injury. Single-cell RNA-seq analysis suggested that loss of MARCH2 prompted activation of NLRP3 inflammasome in cardiomyocytes. Mechanistically, phosphoglycerate mutase 5 (PGAM5) was found to act as a novel regulator of MAVS-NLRP3 signaling by forming liquid-liquid phase separation condensates with MAVS and fostering the recruitment of NLRP3. MARCH2 directly interacts with PGAM5 to promote its K48-linked polyubiquitination and proteasomal degradation, resulting in reduced PGAM5-MAVS co-condensation, and consequently inhibition of NLRP3 inflammasome activation and cardiomyocyte pyroptosis. AAV-based re-introduction of MARCH2 significantly ameliorated I/R-induced mouse heart dysfunction. Altogether, our findings reveal a novel mechanism where MARCH2-mediated ubiquitination negatively regulates the PGAM5/MAVS/NLRP3 axis to protect against cardiomyocyte pyroptosis and myocardial I/R injury.

17.
ACS Nano ; 18(10): 7485-7495, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38415599

RESUMO

Homovanillic acid (HVA) is a major dopamine metabolite, and blood HVA is considered as central nervous system (CNS) dopamine biomarker, which reflects the progression of dopamine-associated CNS diseases and the behavioral response to therapeutic drugs. However, facing blood various active substances interference, particularly structurally similar catecholamines and their metabolites, real-time and accurate monitoring of blood HVA remains a challenge. Herein, a highly selective implantable electrochemical fiber sensor based on a molecularly imprinted polymer is reported to accurately monitor HVA in vivo. The sensor exhibits high selectivity, with a response intensity to HVA 12.6 times greater than that of catecholamines and their metabolites, achieving 97.8% accuracy in vivo. The sensor injected into the rat caudal vein tracked the real-time changes of blood HVA, which paralleled the brain dopamine fluctuations and indicated the behavioral response to dopamine increase. This study provides a universal design strategy for improving the selectivity of implantable electrochemical sensors.


Assuntos
Catecolaminas , Dopamina , Ratos , Animais , Ácido Homovanílico/metabolismo , Encéfalo/metabolismo
18.
Phytomedicine ; 126: 155437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394735

RESUMO

BACKGROUND: In diabetic liver injury, nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Rutin is a bioflavonoid produced by the hydrolysis of glucosidases to quercetin. Its biological activities include lowering blood glucose, regulating insulin secretion, regulating dyslipidemia, and exerting anti-inflammatory effects have been demonstrated. However, its effect on diabetic NAFLD is rarely reported. PURPOSE: Our study aimed to investigate the protective effects of Rutin on diabetic NAFLD and potential pharmacological mechanism. METHODS: We used db/db mice as the animal model to investigate diabetic NAFLD. Oleic acid-treated (OA) HeLa cells were examined whether Rutin had the ability to ameliorate lipid accumulation. HepG2 cells treated with 30 mM/l d-glucose and palmitic acid (PA) were used as diabetic NAFLD in vitro models. Total cholesterol (TC) and Triglycerides (TG) levels were determined. Oil red O staining and BODIPY 493/503 were used to detect lipid deposition within cells. The indicators of inflammation and oxidative stress were detected. The mechanism of Rutin in diabetic liver injury with NAFLD was analyzed using RNA-sequence and 16S rRNA, and the expression of fat-synthesizing proteins in the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway was investigated. Compound C inhibitors were used to further verify the relationship between AMPK and Rutin in diabetic NAFLD. RESULTS: Rutin ameliorated lipid accumulation in OA-treated HeLa. In in vitro and in vivo models of diabetic NAFLD, Rutin alleviated lipid accumulation, inflammation, and oxidative stress. 16S analysis showed that Rutin could reduce gut microbiota dysregulation, such as the ratio of Firmicutes to Bacteroidetes. RNA-seq showed that the significantly differentially genes were mainly related to liver lipid metabolism. And the ameliorating effect of Rutin on diabetic NAFLD was through AMPK/SREBP1 pathway and the related lipid synthesis proteins was involved in this process. CONCLUSION: Rutin ameliorated diabetic NAFLD by activating the AMPK pathway and Rutin might be a potential new drug ingredient for diabetic NAFLD.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Rutina/farmacologia , Células HeLa , RNA Ribossômico 16S , Fígado , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Camundongos Endogâmicos C57BL
19.
J Pharm Anal ; 14(1): 100-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352946

RESUMO

Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus. Angiogenesis is a major pathophysiology in endometriosis. Our previous studies have demonstrated that the prodrug of epigallocatechin gallate (ProEGCG) exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate (EGCG). However, their direct binding targets and underlying mechanisms for the differential effects remain unknown. In this study, we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis. Additionally, 1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin (MTDH) and PX domain containing serine/threonine kinase-like (PXK) as novel binding targets of EGCG and ProEGCG, respectively. Computational simulation and BioLayer interferometry were used to confirm their binding affinity. Our results showed that MTDH-EGCG inhibited protein kinase B (Akt)-mediated angiogenesis, while PXK-ProEGCG inhibited epidermal growth factor (EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor (HIF-1a)/vascular endothelial growth factor (VEGF) pathway. In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways. Moreover, our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.

20.
Adv Mater ; 36(16): e2311717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230910

RESUMO

Solid-solid phase change materials (SSPCMs) with crosslinked polymer structures have received sustained interest due to their remarkable shape stability, enabling their application independently without the need for encapsulation or supporting materials. However, the crosslinking structure also compromises their latent heat and poses challenges to their recyclability. Herein, a novel strategy harnessing the internal-catalyzed reversible anhydride-alcohol crosslinking reaction to fabricate SSPCMs with superior latent heat and exceptional dual recyclability is presented. Easily accessible anhydride copolymers (e.g., propylene-maleic anhydride alternating copolymers), provide abundant reactive anhydride sites within the polymer matrix; polyethylene glycol serves as both the grafted phase change component and the crosslinker. The resulting SSPCMs attain a peak latent heat value of 156.8 J g-1 which surpasses all other reported recyclable crosslinked SSPCMs. The materials also exhibit certain flexibility and a tunable tensile strength ranging from 6.6 to 11.0 MPa. Beyond that, leveraging the reversible anhydride-alcohol crosslinks, the SSPCMs demonstrate dual recyclability through bond-exchange remolding and reversible-dissociation-enabled dissolving-recrosslinking without any reactive chemicals. Furthermore, by integrating solar-thermal conversion fillers like polydopamine nanoparticles, the potential of the system in efficient conversion, storage, and release of solar energy is highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...