Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Carcinogenesis ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742453

RESUMO

Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been implicated in several tumors. UCA1 promotes cell proliferation, migration and invasion of GC cells, but the molecular mechanism has not been fully elucidated. This study revealed the oncogenic effects of UCA1 on cell growth and invasion. Furthermore, UCA1 expression was significantly correlated with the overall survival of GC patients, and the clinicopathological indicators, including tumor size, depth of invasion, lymph node metastasis, and TNM stage. Additionally, miR-1-3p was identified as a downstream target of UCA1, which was negatively regulated by UCA1. MiR-1-3p inhibited cell proliferation and vasculogenic mimicry (VM), and induced cell apoptosis by upregulating BAX, BAD, and tumor suppressor TP53 expression levels. Moreover, miR-1-3p almost completely reversed the oncogenic effect caused by UCA1, including cell growth, migration and VM formation. This study also confirmed UCA1 promoted tumor growth in vivo. In this study, we also revealed the correlation between UCA1 and VM formation, which is potentially crucial for tumor metastasis. Meanwhile, its downstream target miR-1-3p inhibited VM formation in GC cells. In summary, these findings indicate that UCA1/miR-1-3p axis is potential target for GC treatment.

2.
IUBMB Life ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717123

RESUMO

Angiomiotin (AMOT) family comprises three members: AMOT, AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). AMOTL2 is widely expressed in endothelial cells, epithelial cells, and various cancer cells. Specifically, AMOTL2 predominantly localizes in the cytoplasm and nucleus in human normal cells, whereas associates with cell-cell junctions and actin cytoskeleton in non-human cells, and locates at cell junctions or within the recycling endosomes in cancer cells. AMOTL2 is implicated in regulation of tube formation, cell polarity, and shape, although the specific impact on tumorigenesis remains to be conclusively determined. It has been shown that AMOTL2 enhances tumor growth and metastasis in pancreatic, breast, and colon cancer, however inhibits cell proliferation and migration in lung, hepatocellular cancer, and glioblastoma. In addition to its role in cell shape and cytoskeletal dynamics through co-localization with F-actin, AMOTL2 modulates the transcription of Yes-associated protein (YAP) by binding to it, thereby affecting its phosphorylation and cellular sequestration. Furthermore, the stability and cellular localization of AMOTL2, influenced by its phosphorylation and ubiquitination mediated by specific proteins, affects its cellular function. Additionally, we observe that AMOTL2 is predominantly downregulated in some tumors, but significantly elevated in colorectal adenocarcinoma (COAD). Moreover, overall analysis, GSEA and ROC curve analysis indicate that AMOTL2 exerts as an oncogenic protein in COAD by modulating Wnt pathway, participating in synthesis of collagen formation, and interacting with extracellular matrix receptor. In addition, AMOTL2 potentially regulates the distribution of immune cells infiltration in COAD. In summary, AMOTL2 probably functions as an oncogene in COAD. Consequently, further in-depth mechanistic research is required to elucidate the precise roles of AMOTL2 in various cancers.

3.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746314

RESUMO

Obesity is a growing global health epidemic with limited effective therapeutics. Serotonin (5-HT) is one major neurotransmitter which remains an excellent target for new weight-loss therapies, but there remains a gap in knowledge on the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using a closed-loop optogenetic feeding paradigm, we showed that the 5-HTDRN→arcuate nucleus (ARH) circuit plays an important role in regulating meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response to GABAergic inputs can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the instrumental role of dopaminergic inputs via dopamine receptor D2 in 5-HTDRN neurons in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, which allows for the initiation of a meal.

4.
Cancer Immunol Immunother ; 73(6): 115, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693304

RESUMO

In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.


Assuntos
Matriz Extracelular , Neoplasias , Macrófagos Associados a Tumor , Humanos , Matriz Extracelular/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo
5.
J Cancer Res Clin Oncol ; 150(5): 244, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717526

RESUMO

PURPOSE: Cystatin SA (CST2) belongs to the superfamily of cysteine protease inhibitors. Emerging research indicates that CST2 is often dysregulated across various cancers. Its role and molecular mechanisms in gastric cancer remain underexplored. This study aims to explore the expression and function of CST2 in gastric cancer. METHODS: CST2 expression was analyzed and validated through Western blot. CST2 overexpression was induced by lentivirus in GC cells, and the correlation between CST2 expression levels and downstream signaling pathways was assessed. In addition, multiple assays, including cell proliferation, colony formation, wound-healing, and transwell migration/invasion, were considered to ascertain the influence of CST2 overexpression on gastric cancer. The cell cycle and apoptosis were detected by flow cytometry. RESULTS: CST2 expression at the protein level was decreased to be reduced in both gastric cancer tissues and cell lines, and CST2 expression attenuate gastric cancer growth, an effect restricted to gastric cancer cells and absent in gastric epithelial GES-1 cells. Furthermore, CST2 was demonstrated to improve chemosensitivity to Oxaliplatin in gastric cancer cells through the PI3K/AKT signaling pathway. CONCLUSION: These findings indicate that CST2 is downregulated at the protein level in gastric cancer tissues and cell lines. Additionally, CST2 was found to attenuate the growth of gastric cancer cells and to enhance sensitivity to Oxaliplatin through the PI3K/AKT signaling pathway, specific to gastric cancer cell lines. CST2 may serve as a tumor suppressor gene increasing sensitivity to Oxaliplatin in gastric cancer.


Assuntos
Proliferação de Células , Oxaliplatina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Oxaliplatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Cistatinas Salivares/metabolismo , Cistatinas Salivares/genética , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Movimento Celular/efeitos dos fármacos
6.
Sci Rep ; 14(1): 8201, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589634

RESUMO

The α-tubulin subtype, Tubulin α-1b chain (TUBA1B), has been shown to influence immune cell infiltration, cancer growth, and survival across various malignancies. However, a comprehensive study has not yet been undertaken examining the immunological and predictive effects of TUBA1B in a pan-carcinoma context. Using data from TCGA, GEO, and other databases, we analyzed TUBA1B expression across various carcinoma types using transcriptional profiling, prognostic implications, genetic and epigenetic alterations, methylation patterns, and immunological significance. To validate our findings, we conducted Western blot analysis to assess TUBA1B protein levels in matched breast cancer tissue samples and performed CCK-8 proliferation assay, flow cytometry, transwell invasion, and migration assays to comprehensively examine the functional impact of TUBA1B on breast cancer cells. Our pan-cancer analysis found TUBA1B upregulation across most tumor types, with varying expression patterns in distinct immune and molecular subtypes. High TUBA1B expression was an independent risk factor and associated with poor prognoses in several cancers, including BRCA, KICH, LGG, LUAD, and MESO. TUBA1B also demonstrates moderate to high diagnostic accuracy in most tumor types. Increased m6A methylation levels were observed in the TUBA1B gene, while its promoter region displayed low methylation levels. TUBA1B's expression impacted some cancers by elevating tumor mutation burden, microsatellite instability, neoantigen formation, immune cell infiltration, and the modulation of immune checkpoints. Functional enrichment analysis highlights TUBA1B's involvement in important cellular processes such as the cell cycle, p53 signaling, cell senescence, programmed cell death, and the regulation of immune-related pathways. Moreover, our study reveals higher TUBA1B protein expression in breast cancer tissues compared to adjacent tissues. In vitro experiments confirm that TUBA1B deletion reduces breast cancer cell proliferation, invasion, and migration while increasing apoptosis. In conclusion, our study suggests that TUBA1B could potentially serve as a diagnostic marker for predicting cancer immunological profiles and survival outcomes and shed light on the expression and role of TUBA1B in breast cancer, providing a solid foundation for considering it as a promising therapeutic target for breast cancer patient treatment.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/genética , Tubulina (Proteína)/genética , Prognóstico , Biomarcadores
7.
Cancer Cell Int ; 24(1): 95, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438907

RESUMO

BACKGROUND: The present study aimed to investigate the expression level, biological function, and underlying mechanism of transmembrane protein 176B (TMEM176B) in gastric cancer (GC). METHODS: TMEM176B expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB). The function of TMEM176B was determined by various in vitro assays including colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and flow cytometry. Bioinformatics techniques were then used to elucidate the signaling pathways associated with TMEM176B activity. Tumor formation experiments were conducted on nude mice for in vivo validation of the preceding findings. TMEM176B expression was cross-referenced to clinicopathological parameters and survival outcomes. RESULTS: It was observed that TMEM176B was overexpressed in GC cells and tissues. Targeted TMEM176B abrogation inhibited colony formation, proliferation, migration, and invasion but promoted apoptosis in GC cell lines while TMEM176B overexpression had the opposite effects. Subsequent experimental validation disclosed an association between TMEM176B and the phosphatidylinositol 3-carboxykinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling axis. Moreover, TMEM176B affects GC cancer progression by regulating asparagine synthetase (ASNS). The in vivo assays confirmed that TMEM176B is oncogenic and the clinical data revealed a connection between TMEM176B expression and the clinicopathological determinants of GC. CONCLUSION: The foregoing results suggest that TMEM176B significantly promotes the development of gastric cancer and is an independent prognostic factor of it.

8.
Opt Express ; 32(3): 3606-3618, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297578

RESUMO

In this paper, we present the bit error rate (BER) performance of the underwater wireless optical communication (UWOC) systems using the optical space shift keying (OSSK) on the gamma-gamma turbulent fading channel, which also considers pointing errors and channel estimation errors. Firstly, we develop the new expressions for the probability density function (PDF) based on the Gamma-Gamma distribution with error factors. Subsequently, we analyze the statistical characteristic of the difference in attenuation coefficients between two channels in the OSSK system, by which we provide analytical results for evaluating the average BER performance. The results show that the effective improvement of spectral efficiency (SE) and BER performance is achieved by rationally allocating the number of lasers and detectors in the system. The OSSK-UWOC system performs better when a narrow beam waist is used. Furthermore, the presence of channel estimation error brings the BER performance advantage to the system, and the system with a high channel estimation error (ρ = 0.7) shows a 4 dB improvement in signal-to-noise ratio (SNR) gain compared to the system with a low channel estimation error (ρ = 0.95). The findings in this paper can be used for the UWOC system design.

9.
Br J Surg ; 111(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215239

RESUMO

BACKGROUND: The aim of this multicentre cohort study was to compare the long-term oncological outcomes of robotic gastrectomy (RG) and laparoscopic gastrectomy (LG) for patients with gastric cancer. METHODS: Patients with gastric cancer who underwent radical gastrectomy by robotic or laparoscopic approaches from 1 March 2010 to 31 December 2018 at 10 high-volume centres in China were selected from institutional databases. Patients receiving RG were matched 1 : 1 by propensity score with patients undergoing LG. The primary outcome was 3-year disease-free survival. Secondary outcomes were overall survival and disease recurrence. RESULTS: Some 2055 patients who underwent RG and 4309 patients who had LG were included. The propensity score-matched cohort comprised 2026 RGs and 2026 LGs. Median follow-up was 41 (i.q.r. 39-58) months for the RG group and 39 (38-56) months for the LG group. The 3-year disease-free survival rates were 80.8% in the RG group and 79.5% in the LG group (log rank P = 0.240; HR 0.92, 95% c.i. 0.80 to 1.06; P = 0.242). Three-year OS rates were 83.9 and 81.8% respectively (log rank P = 0.068; HR 0.87, 0.75 to 1.01; P = 0.068) and the cumulative incidence of recurrence over 3 years was 19.3% versus 20.8% (HR 0.95, 0.88 to 1.03; P = 0.219), with no difference between groups. CONCLUSION: RG and LG in patients with gastric cancer are associated with comparable disease-free and overall survival.


Assuntos
Laparoscopia , Levamisol/análogos & derivados , Procedimentos Cirúrgicos Robóticos , Neoplasias Gástricas , Humanos , Resultado do Tratamento , Estudos de Coortes , Neoplasias Gástricas/cirurgia , Gastrectomia , Pontuação de Propensão , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia
10.
Mater Horiz ; 11(4): 1079-1087, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38093683

RESUMO

Lead-free piezoceramics with large controllable deformations are highly desirable for numerous energy converter applications ranging from consumer electronics to medical microrobots. Although several new classes of high-performance ferroelectrics have been discovered, a universal strategy to enable various piezoceramics to realize large electromechanical deformations is still lacking. Herein, by gradually reducing the thickness from 0.5 mm to 0.1 mm, we discover that a large nominal electrostrain of ∼11.49% can be achieved in thin 0.937(Bi0.5Na0.5)TiO3-0.063BaTiO3 (BNT-BT) ceramics with highly asymmetric strain-electric field curves. Further analyses of the polarization switching process reveal that the boosted strain curves originate from the bending deformation driven by asymmetric ferroelastic switching in the surface layers. Based on this, one monolayer BNT-BT was designed to realize digital displacement actuation and a scanning mirror application with a maximum mirror deflection angle of 44.38°. Moreover, the surface effect-induced bending deformation can be extended to other piezoceramics, accompanied by derived shape retention effects. These discoveries raise the possibility of utilizing thickness engineering to design large-displacement actuators and may accelerate the development of high-performance lead-free piezoceramics.

11.
Br J Surg ; 111(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37943801

RESUMO

BACKGROUND: Right hemicolectomy is the standard treatment for right-sided colon cancer. There is variation in the technical aspects of performing right hemicolectomy as well as in short-term outcomes. It is therefore necessary to explore best clinical practice following right hemicolectomy in expert centres. METHODS: This snapshot study of right hemicolectomy for colon cancer in China was a prospective, multicentre cohort study in which 52 tertiary hospitals participated. Eligible patients with stage I-III right-sided colon cancer who underwent elective right hemicolectomy were consecutively enrolled in all centres over 10 months. The primary endpoint was the incidence of postoperative 30-day anastomotic leak. RESULTS: Of the 1854 patients, 89.9 per cent underwent laparoscopic surgery and 52.3 per cent underwent D3 lymph node dissection. The overall 30-day morbidity and mortality were 11.7 and 0.2 per cent, respectively. The 30-day anastomotic leak rate was 1.4 per cent. In multivariate analysis, ASA grade > II (P < 0.001), intraoperative blood loss > 50 ml (P = 0.044) and D3 lymph node dissection (P = 0.008) were identified as independent risk factors for postoperative morbidity. Extracorporeal side-to-side anastomosis (P = 0.031), intraoperative blood loss > 50 ml (P = 0.004) and neoadjuvant chemotherapy (P = 0.004) were identified as independent risk factors for anastomotic leak. CONCLUSION: In high-volume expert centres in China, laparoscopic resection with D3 lymph node dissection was performed in most patients with right-sided colon cancer, and overall postoperative morbidity and mortality was low. Further studies are needed to explore the optimal technique for right hemicolectomy in order to improve outcomes further.


Assuntos
Neoplasias do Colo , Laparoscopia , Humanos , Fístula Anastomótica/epidemiologia , Fístula Anastomótica/etiologia , Fístula Anastomótica/cirurgia , Estudos de Coortes , Estudos Prospectivos , Perda Sanguínea Cirúrgica , Neoplasias do Colo/patologia , Colectomia/efeitos adversos , Colectomia/métodos , Morbidade , Fatores de Risco , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Estudos Retrospectivos
12.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1093-1104, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37606757

RESUMO

Atherosclerosis (AS) is an underlying cause of the majority of coronary artery disease (CAD), in which proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) exert vital roles. It has been reported that circular RNAs (circRNAs) are associated with the VSMCs function. Here, we undertook to explore the biological function and mechanism of hsa_circ_0031891 in a platelet-derived growth factor-BB (PDGF-BB)-induced AS cell model. Hsa_circ_0031891 and microRNA-579-3p (miR-579-3p) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation and migration were detected using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assay. Protein levels of alpha-smooth muscle actin (α-SMA), smooth muscle protein 22-α (SM22-α), Osteopontin, and High mobility group box-1 (HMGB1) were determined using western blot assay. After predicting via a variety of bioinformatics software, the binding between miR-579-3p and hsa_circ_0031891 or HMGB1 was validated using dual-luciferase reporter and RNA pull-down assays. Increased hsa_circ_0031891 and HMGB1 and reduced miR-579-3p were found in CAD patients and PDGF-BB-induced human aortic vascular smooth muscle cells (HA-VSMCs). Moreover, hsa_circ_0031891 deficiency relieved PDGF-BB-mediated HA-VSMC proliferation, migration, and dedifferentiation. Mechanically, hsa_circ_0031891 modulated HMGB1 expression via sponging miR-579-3p. Hsa_circ_0031891 boosted PDGF-BB-induced proliferation, migration, and dedifferentiation partly by regulating the miR-579-3p/HMGB1 axis, hinting at a feasible therapeutic strategy for AS.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Proteína HMGB1 , MicroRNAs , Humanos , Becaplermina , Músculo Liso Vascular , Proteína HMGB1/genética , Proliferação de Células , Doença da Artéria Coronariana/genética , MicroRNAs/genética , Movimento Celular
13.
IEEE Trans Pattern Anal Mach Intell ; 46(2): 1134-1147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903052

RESUMO

Large-scale Gaussian process (GP) modeling is becoming increasingly important in machine learning. However, the standard modeling method of GPs, which uses the maximum likelihood method and the best linear unbiased predictor, is designed to run on a single computer, which often has limited computing power. Therefore, there is a growing demand for approximate alternatives, such as composite likelihood methods, that can take advantage of the power of multiple computers. However, these alternative methods in the literature offer limited options for practitioners because most methods focus more on computational efficiency rather than statistical efficiency. Limited accurate solutions to the parameter estimation and prediction for fast GP modeling are available in the literature for supercomputing practitioners. Therefore, this study develops an optimal composite likelihood (OCL) scheme for distributed GP modeling that can minimize information loss in parameter estimation and model prediction. The proposed predictor, called the best linear unbiased block predictor (BLUBP), has the minimum prediction variance given the partitioned data. Numerical examples illustrate that both the proposed composite likelihood estimation and prediction methods provide more accurate performance than their traditional counterparts under various cases, and an extremely close approximation to the standard modeling method is observed.

14.
Int J Clin Oncol ; 29(2): 149-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112831

RESUMO

BACKGROUND: Early diagnosis and treatment are crucial to improve the prognosis of colorectal cancer (CRC). At present, there is a lack of an accurate CRC screening factor. We conducted folate receptor-positive circulating tumor cell analysis (FR + CTC analysis) in distinguishing CRC from benign colorectal diseases to evaluate the diagnostic efficiency. METHODS: Clinical data of patients admitted to The First Affiliated Hospital of Anhui Medical University from January 2021 to July 2022 were retrospectively collected. Levels of FR + CTC and other indicators were analyzed. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic performance of these molecular biomarkers. RESULTS: Data of 103 patients with CRC and 54 patients with benign colorectal diseases were collected. FR + CTC levels were observed significantly higher in CRC patients than in patients with benign colorectal diseases (P < 0.001). FR + CTC level was correlated with tumor diameter, differentiation, T-stage, pathological stage, clinical stage, and intravascular tumor thrombus in patients with CRC (P < 0.05). The optimal cutoff value of FR + CTC level for diagnosing CRC patients was 7.66 FU/3 ml, with a sensitivity of 85.4%, a specificity of 74.1%, and an Area Under Curve (AUC) of 0.855 (95% CI 0.77-0.923). In < 50-years old patients with CRC, the diagnostic efficiency of FR + CTC was excellent, with an AUC of 0.936 (95% CI 0.877-0.995). CONCLUSION: FR + CTC counting has excellent diagnostic efficiency in screening of CRC. FR + CTC count can also predict the tumor stage of CRC patients before surgery, and guide the choice of treatment.


Assuntos
Neoplasias Colorretais , Células Neoplásicas Circulantes , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/cirurgia , Ácido Fólico
15.
Immunopharmacol Immunotoxicol ; 46(2): 240-254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156770

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is an inflammatory intestine disease characterized by dysfunction of the intestinal mucosal barrier, ferroptosis, and apoptosis. Previous researches suggest that celecoxib, a nonsteroidal anti-inflammatory drug, holds promise in alleviating inflammation in UC. Therefore, this study aims to investigate the effects and mechanisms of celecoxib in UC. METHODS: To identify ferroptosis-related drugs and genes associated with UC, we utilized the Gene Expression Omnibus (GEO), FerrDb databases, and DGIdb database. Subsequently, we established a 2.5% DSS (Dextran sulfate sodium)-induced colitis model in mice and treated them with 10 mg/kg of celecoxib to validate the bioinformatics results. We evaluated histological pathologies, inflammatory response, intestinal barrier function, ferroptosis markers, and apoptosis regulators. RESULTS: Celecoxib treatment significantly ameliorated DSS-induced UC in mice, as evidenced by the body weight change curve, colon length change curve, disease activity index (DAI) score, and histological index score. Celecoxib treatment reduced the level of pro-inflammatory factors and promoted the expressions of intestinal tight junction proteins such as Claudin-1 and Occludin, thereby restoring the integrity of the intestinal mucosal barrier. Furthermore, celecoxib treatment reversed the ferroptosis characteristics in DSS-induced mice by increasing glutathione (GSH), decreasing malondialdehyde (MDA), and increasing the expression of GPX-4 and xCT. Additionally, apoptosis was induced in mice with UC, as evidenced by increased Caspase3, BAD, P53, BAX, Caspase9 and Aifm1 production, and decreased expression of BCL-XL and BCL2. Celecoxib treatment significantly reversed the apoptotic changes in DSS-induced mice. CONCLUSION: Our findings suggest that celecoxib effectively treats DSS-induced UC in mice by inhibiting ferroptosis and apoptosis.


Celecoxib enhancing intestinal barrier functionCelecoxib alleviates ferroptosis in DSS-induces ulcerative colitisCelecoxib effectively alleviates apoptosis signaling pathway.


Assuntos
Colite Ulcerativa , Colite , Ferroptose , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Celecoxib/farmacologia , Colo/patologia , Função da Barreira Intestinal , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colite/induzido quimicamente , Glutationa/metabolismo , Apoptose , Camundongos Endogâmicos C57BL
16.
Sci Adv ; 9(50): eadj2908, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091396

RESUMO

Modern analog computing, by gaining momentum from nonvolatile resistive memory devices, deals with matrix computations. In-memory analog computing has been demonstrated for solving some basic but ordinary matrix problems in one step. Among the more complicated matrix problems, compressed sensing (CS) is a prominent example, whose recovery algorithms feature high-order matrix operations and hardware-unfriendly nonlinear functions. In light of the local competitive algorithm (LCA), here, we present a closed-loop, continuous-time resistive memory circuit for solving CS recovery in one step. Recovery of one-dimensional (1D) sparse signal and 2D compressive images has been experimentally demonstrated, showing elapsed times around few microseconds and normalized mean squared errors of 10-2. The LCA circuit is one or two orders of magnitude faster than conventional digital approaches. It also substantially outperforms other (electronic or exotically photonic) analog CS recovery methods in terms of speed, energy, and fidelity, thus representing a highly promising technology for real-time CS applications.

17.
World J Gastroenterol ; 29(44): 5919-5934, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38111505

RESUMO

BACKGROUND: The role of Tousled-like kinase 1 (TLK1) in in gastric cancer (GC) remains unclear. AIM: To investigate the expression, biological function, and underlying mechanisms of TLK1 in GC. METHODS: We measured TLK1 protein expression levels and localized TLK1 in GC cells and tissues by western blot and immunofluorescence, respectively. We transfected various GC cells with lentiviruses to create TLK1 overexpression and knockdown lines and established the functional roles of TLK1 through in vitro colony formation, 5-ethynyl-2`-deoxyuridine, and Transwell assays as well as flow cytometry. We applied bioinformatics to elucidate the signaling pathways associated with TLK1. We performed in vivo validation of TLK1 functions by inducing subcutaneous xenograft tumors in nude mice. RESULTS: TLK1 was significantly upregulated in GC cells and tissues compared to their normal counterparts and was localized mainly to the nucleus. TLK1 knockdown significantly decreased colony formation, proliferation, invasion, and migration but increased apoptosis in GC cells. TLK1 overexpression had the opposite effects. Bioinformatics revealed, and subsequent experiments verified, that the tumor growth factor-beta signaling pathway was implicated in TLK1-mediated GC progression. The in vivo assays confirmed that TLK1 promotes tumorigenesis in GC. CONCLUSION: The findings of the present study indicated that TLK1 plays a crucial role in GC progression and is, therefore, promising as a therapeutic target against this disease.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/patologia , Camundongos Nus , Transdução de Sinais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas Serina-Treonina Quinases/metabolismo
18.
3D Print Addit Manuf ; 10(6): 1347-1360, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116211

RESUMO

3D printing has exhibited significant potential in outer space and medical implants. To use this technology in the specific high-value scenarios, 3D-printed parts need to satisfy quality-related requirements. In this article, the influence of the filament feeder operating states of 3D printer on the compressive properties of 3D-printed parts is studied in the fused filament fabrication process. A machine learning approach, back-propagation neural network with a genetic algorithm (GA-BPNN) optimized by k-fold cross-validation, is proposed to monitor the operating states and predict the compressive properties. Vibration and current sensors are used in situ to monitor the operating states of the filament feeder, and a set of features are extracted and selected from raw sensor data in time and frequency domains. Results show that the operating states of the filament feeder significantly affected the compressive properties of the fabricated samples, the operating states were accurately recognized with 96.3% rate, and compressive properties were successfully predicted by the GA-BPNN. This proposed method has the potential for use in industrial applications after 3D printing without requiring any further quality control.

19.
Mol Breed ; 43(12): 84, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38009100

RESUMO

Drought is one of the major abiotic stresses affecting the maize production worldwide. As a cross-pollination crop, maize is sensitive to water stress at flowering stage. Drought at this stage leads to asynchronous development of male and female flower organ and increased interval between anthesis and silking, which finally causes failure of pollination and grain yield loss. In the present study, the expansin gene ZmEXPA5 was cloned and its function in drought tolerance was characterized. An indel variant in promoter of ZmEXPA5 is significantly associated with natural variation in drought-induced anthesis-silking interval. The drought susceptible haplotypes showed lower expression level of ZmEXPA5 than tolerant haplotypes and lost the cis-regulatory activity of ZmDOF29. Increasing ZmEXPA5 expression in transgenic maize decreases anthesis-silking interval and improves grain yield under both drought and well-watered environments. In addition, the expression pattern of ZmEXPA5 was analyzed. These findings provide insights into the genetic basis of drought tolerance and a promising gene for drought improvement in maize breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01432-x.

20.
J Transl Med ; 21(1): 831, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980457

RESUMO

BACKGROUND: Microbiota alterations are linked with gastric cancer (GC). However, the relationship between the oral microbiota (especially oral fungi) and GC is not known. In this study, we aimed to apply 2b-RAD sequencing for Microbiome (2b-RAD-M) to characterize the oral microbiota in patients with GC. METHODS: We performed 2b-RAD-M analysis on the saliva and tongue coating of GC patients and healthy controls. We carried out diversity, relative abundance, and composition analyses of saliva and tongue coating bacteria and fungi in the two groups. In addition, indicator analysis, the Gini index, and the mean decrease accuracy were used to identify oral fungal indicators of GC. RESULTS: In this study, fungal imbalance in the saliva and tongue coating was observed in the GC group. At the species level, enriched Malassezia globosa (M. globosa) and decreased Saccharomyces cerevisiae (S. cerevisiae) were observed in saliva and tongue coating samples of the GC group. Random forest analysis indicated that M. globosa in saliva and tongue coating samples could serve as biomarkers to diagnose GC. The Gini index and mean decreases in accuracy for M. globosa in saliva and tongue coating samples were the largest. In addition, M. globosa in saliva and tongue coating samples classified GC from the control with areas under the receiver operating curve (AUCs) of 0.976 and 0.846, respectively. Further ecological analysis revealed correlations between oral bacteria and fungi. CONCLUSION: For the first time, our data suggested that changes in oral fungi between GC patients and controls may help deepen our understanding of the complex spectrum of the different microbiotas involved in GC development. Although the cohort size was small, this study is the first to use 2b-RAD-M to reveal that oral M. globosa can be a fungal biomarker for detecting GC.


Assuntos
Microbiota , Neoplasias Gástricas , Humanos , Língua/microbiologia , Saccharomyces cerevisiae , Bactérias , Saliva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...