Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(37): 26857-26862, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39184007

RESUMO

Modification of the parent structure of molecules often alters their physicochemical properties and biological activities. Herein, a practical, efficient, and highly regioselective C-H alkylation of phenols with alcohols via dehydroxylative cross-coupling was developed to produce para-alkylated phenols with excellent regioselectivities and yields, using which propofol derivatives were rapidly synthesized. This process is performed under mild and simple conditions and is well-compatible with a variety of alcohols (secondary and tertiary benzylic alcohols as well as allyl alcohols) as alkylated agents. In addition, high aryl ether derivatives were also obtained using this catalytic system.

2.
Int J Gen Med ; 16: 2519-2530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346812

RESUMO

Background: Hepatocellular carcinoma (HCC) is a major cause of cancer death in the world. The aim of this study was to establish a new model to predict the prognosis of HCC. Materials and Methods: The mRNA, miRNA and lncRNA expression profiles of early (stage I-II) and late (stage III-IV) stage HCC patients were acquired from The Cancer Genome Atlas (TCGA) database. The differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) were identified between early and late stage HCC. Key molecules associated with the prognosis, and important immune cell types in HCC were identified. The nomogram based on incorporating age, gender, stage, and all important factors was constructed to predict the survival of HCC. Results: A total of 1516 DEmRNAs, 97 DEmiRNAs and 87 DElncRNAs were identified. A DElncRNA-DEmiRNA-DEmRNA regulatory network including 78 mRNAs, 50 miRNAs and 1 lncRNA was established. Among the regulatory network, 11 molecules were significantly correlated with the prognosis of HCC based on Lasso regression analysis. Then, Preadipocytes and 3 survival-associated DEmRNAs were identified as crucial biomarkers. Subsequently, a nomogram with a differentiation degree of 0.758, including 1 immune cell, 11 mRNAs and 3 miRNAs, was generated. Conclusion: Our study constructed a model by incorporating clinical information, significant biomarkers and immune cells to predict the survival of HCC, which achieved a good performance.

3.
Plant Cell Environ ; 44(6): 1846-1857, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33576018

RESUMO

Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin-responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with a high and auxin-mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin-responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1-mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis-based insertion of the INDITTO2 transposon into the DRO1 promoter of the non-adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.


Assuntos
Elementos de DNA Transponíveis/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Plântula/genética , Plântula/fisiologia
4.
PLoS One ; 3(9): e3131, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18769549

RESUMO

Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants.


Assuntos
Locos de Características Quantitativas , Sementes/genética , Algoritmos , Alelos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Cruzamentos Genéticos , Genes de Plantas , Impressão Genômica , Genótipo , Modelos Genéticos , Modelos Estatísticos , Fenômenos Fisiológicos Vegetais , Ploidias , Sementes/crescimento & desenvolvimento
5.
Theor Appl Genet ; 115(8): 1147-62, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17912496

RESUMO

Endoreduplication in maize endosperm precedes the onset of starch and storage protein synthesis, and it is generally thought to influence grain filling. We created four backcross populations by reciprocally crossing the F(1) progeny of a cross between Sg18 and Mo17 to the parental inbreds, which differ in endoreduplication by two parameters--mean ploidy and percentage of endoreduplicated nuclei. This four-backcross design allowed us to estimate and test the additive and dominant genetic effects of quantitative trait loci (QTLs) affecting endoreduplication. An analysis of endosperm from the four backcross populations at 16 days after pollination using a modified triploid mapping approach identified three endosperm QTLs influencing mean ploidy and two endosperm QTLs affecting the percentage of endoreduplicated nuclei. Some of these QTLs may manifest their effects on endoreduplication via expression in the embryo. The QTLs detected display strong dominance or over-dominance and interacted epistatically with an embryo-expressed QTL. This helps to explain the genetic basis for transgressive segregation in the backcross progeny. Although the favorable alleles that increase mean ploidy and percentage of endoreduplicated nuclei can be contributed by both parents, the Mo17-derived alleles for endoreduplication were often dominant or over-dominant to the Sg18-derived allele. One QTL on chromosome 7 that may be expressed in both the embryo and endosperm exerted a pleiotropic effect on two different parameters of endoreduplication. The results from this study shed light on the regulation of endoreduplication in maize endosperm and provide a marker-assisted selection strategy for potentially improving grain yield.


Assuntos
Ciclo Celular/genética , Cromossomos de Plantas/genética , Poliploidia , Locos de Características Quantitativas , Sementes/genética , Zea mays/genética , Mapeamento Cromossômico , Marcadores Genéticos , Endogamia , Fenótipo , Zea mays/embriologia
6.
J Econ Entomol ; 100(3): 990-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17598566

RESUMO

It is hypothesized that the interaction between aphids and plants follows a gene-for-gene model. The recent appearance of several new Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), biotypes in the United States and the differential response of wheat, Triticum aestivum L., genotypes containing different resistance genes also suggest a gene-for-gene interaction. However, aphid elicitors remain unknown. This study was conducted to identify fractionated Russian wheat aphid extracts capable of eliciting differential responses between resistant and susceptible wheat genotypes. We extracted whole soluble compounds and separated proteins and metabolites from two Russian wheat aphid biotypes (1 and 2), injected these extracts into seedlings of susceptible wheat Gamtoos (dn7) and resistant 94M370 (Dn7), and determined phenotypic and biochemical plant responses. Injections of whole extract or protein extract from both biotypes induced the typical susceptible symptom, leaf rolling, in the susceptible cultivar, but not in the resistant cultivar. Furthermore, multiple injections with protein extract from biotype 2 induced the development of chlorosis, head trapping, and stunting in susceptible wheat. Injection with metabolite, buffer, or chitin, did not produce any susceptible symptoms in either genotype. The protein extract from the two biotypes also induced significantly higher activities of three defense-response enzymes (catalase, peroxidase, and beta-glucanase) in 94M370 than in Gamtoos. These results indicate that a protein elicitor from the Russian wheat aphid is recognized by a plant receptor, and the recognition is mediated by the Dn7-gene product. The increased activities of defense-response enzymes in resistant plants after injection with the protein fraction suggest that defense response genes are induced after recognition of aphid elicitors by the plant.


Assuntos
Afídeos/química , Proteínas de Insetos/farmacologia , Triticum/efeitos dos fármacos , Animais , Afídeos/genética , Fatores Biológicos , Fracionamento Químico , Modelos Genéticos , Fenótipo , Extratos de Tecidos/farmacologia , Triticum/anatomia & histologia , Triticum/enzimologia
7.
Mol Biol Evol ; 21(6): 991-1007, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14963101

RESUMO

Recently, increasingly more microsatellites, or simple sequence repeats (SSRs) have been found and characterized within protein-coding genes and their untranslated regions (UTRs). These data provide useful information to study possible SSR functions. Here, we review SSR distributions within expressed sequence tags (ESTs) and genes including protein-coding, 3'-UTRs and 5'-UTRs, and introns; and discuss the consequences of SSR repeat-number changes in those regions of both prokaryotes and eukaryotes. Strong evidence shows that SSRs are nonrandomly distributed across protein-coding regions, UTRs, and introns. Substantial data indicates that SSR expansions and/or contractions in protein-coding regions can lead to a gain or loss of gene function via frameshift mutation or expanded toxic mRNA. SSR variations in 5'-UTRs could regulate gene expression by affecting transcription and translation. The SSR expansions in the 3'-UTRs cause transcription slippage and produce expanded mRNA, which can be accumulated as nuclear foci, and which can disrupt splicing and, possibly, disrupt other cellular function. Intronic SSRs can affect gene transcription, mRNA splicing, or export to cytoplasm. Triplet SSRs located in the UTRs or intron can also induce heterochromatin-mediated-like gene silencing. All these effects caused by SSR expansions or contractions within genes can eventually lead to phenotypic changes. SSRs within genes evolve through mutational processes similar to those for SSRs located in other genomic regions including replication slippage, point mutation, and recombination. These mutational processes generate DNA changes that should be connected by DNA mismatch repair (MMR) system. Mutation that has escaped from the MMR system correction would become new alleles at the SSR loci, and then regulate and/or change gene products, and eventually lead to phenotype changes. Therefore, SSRs within genes should be subjected to stronger selective pressure than other genomic regions because of their functional importance. These SSRs may provide a molecular basis for fast adaptation to environmental changes in both prokaryotes and eukaryotes.


Assuntos
Evolução Molecular , Etiquetas de Sequências Expressas , Genes/genética , Repetições de Microssatélites/genética , Fenótipo , Códon/genética , Expressão Gênica , Íntrons/genética , Mutação/genética , Regiões não Traduzidas/genética
8.
Proc Natl Acad Sci U S A ; 100(5): 2489-94, 2003 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-12604784

RESUMO

Wild emmer wheat, Triticum dicoccoides, is the progenitor of modern tetraploid and hexaploid cultivated wheats. Our objective was to map domestication-related quantitative trait loci (QTL) in T. dicoccoides. The studied traits include brittle rachis, heading date, plant height, grain size, yield, and yield components. Our mapping population was derived from a cross between T. dicoccoides and Triticum durum. Approximately 70 domestication QTL effects were detected, nonrandomly distributed among and along chromosomes. Seven domestication syndrome factors were proposed, each affecting 5-11 traits. We showed: (i) clustering and strong effects of some QTLs; (ii) remarkable genomic association of strong domestication-related QTLs with gene-rich regions; and (iii) unexpected predominance of QTL effects in the A genome. The A genome of wheat may have played a more important role than the B genome during domestication evolution. The cryptic beneficial alleles at specific QTLs derived from T. dicoccoides may contribute to wheat and cereal improvement.


Assuntos
Evolução Molecular , Locos de Características Quantitativas , Triticum/classificação , Triticum/genética , Alelos , Mapeamento Cromossômico , Cromossomos , Ligação Genética , Genótipo , Modelos Genéticos , Fenótipo , Fatores de Tempo
9.
Genome ; 45(6): 1216-29, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12502268

RESUMO

Genetic diversity at 38 microsatellite (short sequence repeats (SSRs)) loci was studied in a sample of 54 plants representing a natural population of wild barley, Hordeum spontaneum, at the Neve Yaar microsite in Israel. Wild barley at the microsite was organized in a mosaic pattern over an area of 3180 m2 in the open Tabor oak forest, which was subdivided into four microniches: (i) sun-rock (11 genotypes), (ii) sun-soil (18 genotypes), (iii) shade-soil (11 genotypes), and (iv) shade-rock (14 genotypes). Fifty-four genotypes were tested for ecological-genetic microniche correlates. Analysis of 36 loci showed that allele distributions at SSR loci were nonrandom but structured by ecological stresses (climatic and edaphic). Sixteen (45.7%) of 35 polymorphic loci varied significantly (p < 0.05) in allele frequencies among the microniches. Significant genetic divergence and diversity were found among the four subpopulations. The soil and shade subpopulations showed higher genetic diversities at SSR loci than the rock and sun subpopulations, and the lowest genetic diversity was observed in the sun-rock subpopulation, in contrast with the previous allozyme and RAPD studies. On average, of 36 loci, 88.75% of the total genetic diversity exists within the four microniches, while 11.25% exists between the microniches. In a permutation test, G(ST) was lower for 4999 out of 5000 randomized data sets (p < 0.001) when compared with real data (0.1125). The highest genetic distance was between shade-soil and sun-rock (D = 0.222). Our results suggest that diversifying natural selection may act upon some regulatory regions, resulting in adaptive SSR divergence. Fixation of some loci (GMS61, GMS1, and EBMAC824) at a specific microniche seems to suggest directional selection. The pattern of other SSR loci suggests the operation of balancing selection. SSRs may be either direct targets of selection or markers of selected haplotypes (selective sweep).


Assuntos
Hordeum/genética , Repetições de Microssatélites/genética , Mosaicismo , Alelos , Evolução Biológica , Análise por Conglomerados , Análise Discriminante , Israel , Reação em Cadeia da Polimerase
10.
Mol Ecol ; 11(12): 2453-65, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12453231

RESUMO

Microsatellites, or tandem simple sequence repeats (SSR), are abundant across genomes and show high levels of polymorphism. SSR genetic and evolutionary mechanisms remain controversial. Here we attempt to summarize the available data related to SSR distribution in coding and noncoding regions of genomes and SSR functional importance. Numerous lines of evidence demonstrate that SSR genomic distribution is nonrandom. Random expansions or contractions appear to be selected against for at least part of SSR loci, presumably because of their effect on chromatin organization, regulation of gene activity, recombination, DNA replication, cell cycle, mismatch repair system, etc. This review also discusses the role of two putative mutational mechanisms, replication slippage and recombination, and their interaction in SSR variation.


Assuntos
Evolução Molecular , Variação Genética , Repetições de Microssatélites/genética , Animais , Marcadores Genéticos , Humanos , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA