Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 21(1): 18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429673

RESUMO

BACKGROUND: Cardiac rupture (CR) is a rare but catastrophic mechanical complication of acute myocardial infarction (AMI) that seriously threatens human health. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of CR has yet to be elucidated. METHODS: In the present study, a quantitative approach with tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry was used to characterize the differential protein expression profiles of patients with CR. Plasma samples were collected from patients with CR (n = 37), patients with AMI (n = 47), and healthy controls (n = 47). Candidate proteins were selected for validation by multiple reaction monitoring (MRM) and enzyme-linked immunosorbent assay (ELISA). RESULTS: In total, 1208 proteins were quantified and 958 differentially expressed proteins (DEPs) were identified. The difference in the expression levels of the DEPs was more noticeable between the CR and Con groups than between the AMI and Con groups. Bioinformatics analysis showed most of the DEPs to be involved in numerous crucial biological processes and signaling pathways, such as RNA transport, ribosome, proteasome, and protein processing in the endoplasmic reticulum, as well as necroptosis and leukocyte transendothelial migration, which might play essential roles in the complex pathological processes associated with CR. MRM analysis confirmed the accuracy of the proteomic analysis results. Four proteins i.e., C-reactive protein (CRP), heat shock protein beta-1 (HSPB1), vinculin (VINC) and growth/differentiation factor 15 (GDF15), were further validated via ELISA. By receiver operating characteristic (ROC) analysis, combinations of these four proteins distinguished CR patients from AMI patients with a high area under the curve (AUC) value (0.895, 95% CI, 0.802-0.988, p < 0.001). CONCLUSIONS: Our study highlights the value of comprehensive proteomic characterization for identifying plasma proteome changes in patients with CR. This pilot study could serve as a valid foundation and initiation point for elucidation of the mechanisms of CR, which might aid in identifying effective diagnostic biomarkers in the future.

2.
Elife ; 112022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543411

RESUMO

The exceptionally rich fossil record available for the equid family has provided textbook examples of macroevolutionary changes. Horses, asses, and zebras represent three extant subgenera of Equus lineage, while the Sussemionus subgenus is another remarkable Equus lineage ranging from North America to Ethiopia in the Pleistocene. We sequenced 26 archaeological specimens from Northern China in the Holocene that could be assigned morphologically and genetically to Equus ovodovi, a species representative of Sussemionus. We present the first high-quality complete genome of the Sussemionus lineage, which was sequenced to 13.4× depth of coverage. Radiocarbon dating demonstrates that this lineage survived until ~3500 years ago, despite continued demographic collapse during the Last Glacial Maximum and the great human expansion in East Asia. We also confirmed the Equus phylogenetic tree and found that Sussemionus diverged from the ancestor of non-caballine equids ~2.3-2.7 million years ago and possibly remained affected by secondary gene flow post-divergence. We found that the small genetic diversity, rather than enhanced inbreeding, limited the species' chances of survival. Our work adds to the growing literature illustrating how ancient DNA can inform on extinction dynamics and the long-term resilience of species surviving in cryptic population pockets.


Assuntos
Equidae , Fósseis , Animais , DNA Mitocondrial/genética , Equidae/genética , Genoma , Genômica , Cavalos/genética , Filogenia
3.
Food Chem ; 283: 123-130, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30722851

RESUMO

The influence of maltitol on the physicochemical properties of wheat flour dough and bread were evaluated in terms of texture, thermal features, water mobility, and retrogradation kinetics. The presence of maltitol could slow down the fermentation rate of dough. Breads with 6% of maltitol exhibited lower hardness and chewiness, with a significant decrease of 42% and 31%, respectively (p < 0.05). The use of maltitol could remarkably enhance the gelatinization temperature (p < 0.05) that was confirmed by DSC tool. Through the approach of LF-NMR, the addition of maltitol could increase the mobility of immobilized water, further retarded bread staling. The k values from chewiness and total signal amplitude in breads with 2% and 4% levels of maltitol were smaller than the control, which was proven through kinetics of retrogradation analysis, revealing an overall retarding effect of maltitol in prevention of bread staling.


Assuntos
Pão/análise , Maltose/análogos & derivados , Álcoois Açúcares/metabolismo , Triticum/metabolismo , Água/química , Varredura Diferencial de Calorimetria , Fermentação , Géis/química , Dureza , Espectroscopia de Ressonância Magnética , Maltose/química , Maltose/metabolismo , Álcoois Açúcares/química , Temperatura , Triticum/química
4.
Food Chem ; 233: 369-377, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28530586

RESUMO

The study aims to elucidate the effects of trehalose on the mechanical, thermal, and rheological properties of wheat flour dough and water distribution in bread. Texture profile analysis, DSC, farinograph, extensograph, and frequency sweep were applied in dough. The results from SEM revealed that the gluten film became less notable with the presence of trehalose. The kinetics of staling process, low-field 1H NMR, and water-binding capacity were employed to characterize physicochemical properties of bread. Trehalose decreased the staling rate constant k, indicating an inhibitory effect on firming process in bread. Trehalose had the ability to retain water by hindering the interaction among water molecules, gluten and starch, thus relatively increasing the immobility of the part of water represented by T22 in low-field 1H NMR tests. Trehalose restricted water mobilization during storage, resulting in a better water-holding capacity. Our findings reveal that trehalose could be an improver in dough and bread-making performance, as well as an antistaling agent in bread.


Assuntos
Triticum , Pão , Farinha , Trealose , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...