Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Immunol ; 70: 101837, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659170

RESUMO

Thymus is a primary lymphoid organ essential for the development of T lymphocytes. Age-related thymic involution is a prominent feature of immune senescence. The thymus undergoes rapid growth during fetal and neonatal development, peaks in size before puberty and then begins to undergo a decrease in cellularity with age. Dramatic changes occur with age-associated thymic involution. The most prominent features of thymic involution include: (i) epithelial structure disruption, (ii) adipogenesis, and (iii) thymocyte development arrest. There is a sex disparity in thymus aging. It is a multifactorial process controlled and regulated by a series of molecules, including the transcription factor FOXN1, fibroblast and keratinocyte growth factors (FGF and KGF, respectively), sex steroids, Notch signaling, WNT signaling, and microRNAs. Nevertheless, there is still no satisfactory evolutionary or physiological explanation for age-associated thymic involution, and understanding the precise mechanism(s) for thymus aging remains challenging. Sustained thymic regeneration has yet to be achieved by sex steroid ablation. Recent preclinical studies indicate that long-term thymic reconstitution can be achieved via adoptive transfer of in vitro-generated progenitor T (proT) cells, and improvements in the methods for the generation of human proT cells make this an attractive approach. Future clinical applications may rely on new applications integrating proT cells, cytokine support and sex-steroid inhibition treatments.


Assuntos
Reconstituição Imune , Recém-Nascido , Humanos , Envelhecimento , Timo/fisiologia , Linfócitos T , Hormônios Esteroides Gonadais , Esteroides
2.
Front Immunol ; 13: 926773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874726

RESUMO

The prolonged lag in T cell recovery seen in older patients undergoing hematopoietic stem cell transplant (HSCT), after chemo-/radiotherapy, can lead to immune dysfunction. As a result, recovering patients may experience a relapse in malignancies and opportunistic infections, leading to high mortality rates. The delay in T cell recovery is partly due to thymic involution, a natural collapse in the size and function of the thymus, as individuals age, and partly due to the damage sustained by the thymic stromal cells through exposure to chemo-/radiotherapy. There is a clear need for new strategies to accelerate intrathymic T cell reconstitution when treating aged patients to counter the effects of involution and cancer therapy regimens. Adoptive transfer of human progenitor T (proT) cells has been shown to accelerate T cell regeneration in radiation-treated young mice and to restore thymic architecture in immunodeficient mice. Here, we demonstrate that the adoptive transfer of in vitro-generated proT cells in aged mice (18-24 months) accelerated thymic reconstitution after treatment with chemotherapy and gamma irradiation compared to HSCT alone. We noted that aged mice appeared to have a more limited expansion of CD4-CD8- thymocytes and slower temporal kinetics in the development of donor proT cells into mature T cells, when compared to younger mice, despite following the same chemo/radiation regimen. This suggests a greater resilience of the young thymus compared to the aged thymus. Nevertheless, newly generated T cells from proT cell engrafted aged and young mice were readily present in the periphery accelerating the reappearance of new naïve T cells. Accelerated T cell recovery was also observed in both aged and young mice receiving both proT cells and HSCT. The strategy of transferring proT cells can potentially be used as an effective cellular therapy in aged patients to improve immune recovery and reduce the risk of opportunistic infections post-HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Infecções Oportunistas , Idoso , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Camundongos , Infecções Oportunistas/etiologia
3.
Curr Microbiol ; 77(9): 2441-2448, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506239

RESUMO

Wolbachia is capable of regulating host reproduction, and thus of great significance in preventing the spread of insect-borne diseases and controlling pest insects. The fruit fly Drosophila melanogaster is an excellent model insect for understanding Wolbachia-host interactions. Here we artificially transferred the wCcep strain from the rice moth Corcyra cephalonica into D. melanogaster by microinjection. Crossing experiments indicated that wCcep could induce a high level of CI in the phylogenetically distant host D. melanogaster and imposed no negative fitness costs on host development and fecundity. Based on quantitative analysis, the titres of wCcep and the native wMel strain were negatively correlated, and wCcep could only be transmitted in the novel host for several generations (G0 to G4) after transinfection. Transcriptome sequencing indicated that the invading wCcep strain induced a significant immune- and stress-related response from the host. An association analysis between the expression of immune genes attacin-D/edin and the titre of Wolbachia by linear regression displayed a negative correlation between them. Our study suggest that the intrusion of wCcep elicited a robust immune response from the host and incurred a competitive exclusion from the native Wolbachia strain, which resulted in the failure of its establishment in D. melanogaster.


Assuntos
Mariposas , Wolbachia , Animais , Drosophila melanogaster , Simbiose , Wolbachia/genética
4.
J Agric Food Chem ; 67(20): 5754-5763, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31045365

RESUMO

Recently, although ginseng ( Panax ginseng C. A. Meyer) and its main component saponins (ginsenosides) have been reported to exert protective effects on cisplatin (CDDP)-induced acute kidney injury (AKI), the beneficial activities of non-saponin on CDDP-induced AKI is little known. This research was designed to explore the protective effect and underlying mechanism of arginyl-fructosyl-glucose (AFG), a major and representative non-saponin component generated during the process of red ginseng, on CDDP-caused AKI. AFG at doses of 40 and 80 mg/kg remarkably reversed CDDP-induced renal dysfunction, accompanied by the decreased levels of serum creatinine and blood urea nitrogen. Interestingly, all of oxidative stress indices were ameliorated after pretreatment with AFG continuously for 10 days. Importantly, AFG relieved CDDP-induced inflammation and apoptosis in part by mitigating the cascade initiation steps of nuclear factor κB signals and regulating the participation of the phosphatidylinositol 3-kinase/protein kinase B signal pathway. In conclusion, these results clearly provide strong rationale for the development of AFG to prevent CDDP-induced AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Arginina/análogos & derivados , Cisplatino/efeitos adversos , Medicamentos de Ervas Chinesas/administração & dosagem , Glucose/administração & dosagem , Glicina/análogos & derivados , NF-kappa B/metabolismo , Panax/química , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Arginina/administração & dosagem , Arginina/química , Creatinina/metabolismo , Medicamentos de Ervas Chinesas/química , Glucose/química , Glicina/administração & dosagem , Glicina/química , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Reação de Maillard , Masculino , Camundongos Endogâmicos ICR , NF-kappa B/genética , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos
5.
Phys Chem Chem Phys ; 19(33): 22329-22343, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28805218

RESUMO

The structure of pristine AgFeO2 and phase makeup of Ag0.2FeO1.6 (a one-pot composite comprised of nanocrystalline stoichiometric AgFeO2 and amorphous γ-Fe2O3 phases) was investigated using synchrotron X-ray diffraction. A new stacking-fault model was proposed for AgFeO2 powder synthesized using the co-precipitation method. The lithiation/de-lithiation mechanisms of silver ferrite, AgFeO2 and Ag0.2FeO1.6 were investigated using ex situ, in situ, and operando characterization techniques. An amorphous γ-Fe2O3 component in the Ag0.2FeO1.6 sample is quantified. Operando XRD of electrochemically reduced AgFeO2 and Ag0.2FeO1.6 composites demonstrated differences in the structural evolution of the nanocrystalline AgFeO2 component. As complimentary techniques to XRD, ex situ X-ray Absorption Spectroscopy (XAS) provided insight into the short-range structure of the (de)lithiated nanocrystalline electrodes, and a novel in situ high energy X-ray fluorescence nanoprobe (HXN) mapping measurement was applied to spatially resolve the progression of discharge. Based on the results, a redox mechanism is proposed where the full reduction of Ag+ to Ag0 and partial reduction of Fe3+ to Fe2+ occur on reduction to 1.0 V, resulting in a Li1+yFeIIIFeIIyO2 phase. The Li1+yFeIIIFeIIyO2 phase can then reversibly cycle between Fe3+ and Fe2+ oxidation states, permitting good capacity retention over 50 cycles. In the Ag0.2FeO1.6 composite, a substantial amorphous γ-Fe2O3 component is observed which discharges to rock salt LiFe2O3 and Fe0 metal phase in the 3.5-1.0 V voltage range (in parallel with the AgFeO2 mechanism), and reversibly reoxidizes to a nanocrystalline iron oxide phase.

6.
Phys Chem Chem Phys ; 18(4): 2959-67, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26735498

RESUMO

The combination of ex situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements on 2D layered copper birnessite cathode materials for lithium ion battery applications provides detailed insight into both bulk-crystalline and localized atomic structural changes resulting from electrochemically driven lithium insertion and de-insertion. Copper birnessite electrodes that had been galvanostatically discharged and charged were measured with XRD to determine the accompanying long-range crystalline structure changes, while Mn and Cu K-edge XAS measurements provided a detailed view of the Mn and Cu oxidation state changes along with variations of the local neighboring atom environments around the Mn and Cu centers. While not detectable with XRD spectra, through XAS measurements it was determined that the copper ions (Cu(2+)) are reduced to form amorphous nano-sized Cu metal, and can be oxidized back to Cu(2+). The reversible nature of the interconversion provides a rationale to the enhanced discharge capacity of copper birnessite relative to the analogous copper-free birnessite materials. The manganese oxide octahedra comprising the 2D layers in the original copper birnessite crystal structure disperse during lithium insertion, and revert back close to their original orientation after lithium de-insertion. During electrochemical oxidation or reduction the layered birnessite structure does not collapse, even though significant local disordering around Mn and Cu centers is directly observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...