Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698399

RESUMO

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Assuntos
Hidrogéis , Lipossomos , Polietilenoglicóis , Tripsina , Xantonas , Lipossomos/química , Animais , Polietilenoglicóis/química , Hidrogéis/química , Humanos , Tripsina/metabolismo , Tripsina/química , Feminino , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias da Mama/tratamento farmacológico , Proteólise
2.
Front Immunol ; 15: 1370647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694511

RESUMO

Background: Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. Methods: To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. Results: We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. Conclusions: Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.


Assuntos
Células Endoteliais , Fígado , Mitofagia , Traumatismo por Reperfusão , Humanos , Mitofagia/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Células Endoteliais/metabolismo , Fígado/metabolismo , Fígado/patologia , Perfilação da Expressão Gênica , Masculino , Redes Reguladoras de Genes , Transcriptoma , Feminino
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 437-442, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565509

RESUMO

OBJECTIVE: To explore the clinical phenotype and genetic characteristics of a Chinese pedigree affected with Spastic paraplegia type 5A (SPG5A). METHODS: A pedigree suspected for Hereditary spastic paraplegia (HSP) at Henan Children's Hospital on August 15 2022 was selected as the study subject. Clinical data of the pedigree was collected. Peripheral blood samples were collected from members of the pedigree. Following extraction of genomic DNA, trio-WGS was carried out, and candidate variant was verified by Sanger sequencing. RESULTS: The child, a 1-year-old boy, had presented with microcephaly, hairy face and dorsal side of distal extremities and trunk, intellectual and motor development delay, increased muscle tone of lower limbs, hyperreflexes of bilateral knee tendons, and positive pathological signs. His parents and sister both had normal phenotypes. Trio-WGS revealed that the child has harbored a homozygous c.1250G>A (p.Arg417His) variant of the CYP7B1 gene, for which his mother was heterozygous, the father and sister were of the wild type. The variant was determined to have originated from maternal uniparental disomy (UPD). The result of Sanger sequencing was in keeping with the that of trio-WGS. SPG5A due to maternal UPD of chromosome 8 was unreported previously. CONCLUSION: The child was diagnosed with SPG5A, a complex type of HSP, for which the homozygous c.1250G>A variant of the CYP7B1 gene derived from maternal UPD may be accountable.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Lactente , Masculino , China , Mutação , Paraplegia/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética
4.
Bioorg Chem ; 145: 107188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377815

RESUMO

Despite the advances of multistep enzymatic cascade reactions, their incorporation with abiotic reactions in living organisms remains challenging in synthetic biology. Herein, we combined microbial metabolic pathways and Pd-catalyzed processes for in-situ generation of bioactive conjugated oligomers. Our biocompatible one-pot coupling reaction utilized the fermentation process of engineered E. coli that converted glucose to styrene, which participated in the Pd-catalyzed Heck reaction for in-situ synthesis of conjugated oligomers. This process serves a great interest in understanding resistance evolution by utilizing the inhibitory activity of the synthesized conjugated oligomers. The approach allows for the in-situ combination of biological metabolism and CC coupling reactions, opening up new possibilities for the biosynthesis of unnatural molecules and enabling the in-situ regulation of the bioactivity of the obtained products.


Assuntos
Escherichia coli , Paládio , Escherichia coli/metabolismo , Catálise , Fermentação
5.
Carbohydr Polym ; 330: 121814, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368097

RESUMO

Hemicellulose is mainly distributed in the tightly packed S2 layer of the plant cell wall and the middle lamella. This rigid microstructure of wood and interactions among hemicellulose, lignin, and cellulose jointly restrict the separation and transformation of hemicellulose in the wood matrix. To address this issue, a method combined with microwave-expanding pretreatment (MEP) and microwave-assisted extraction (MAE) with a NaOH solution was carried out. We found that the MEP could effectively create new pathways for bagasse cells in mass transferring. More specifically, 195 % of the specific surface area (m2/g) with 193 % of the pores (>50 nm) increased after MEP; the SEM images also confirmed that the microstructure of bagasse was modified. MAE could considerably exfoliate hemicellulose from cellulose fiber and accelerate mass transfer. Additionally, we optimized MEP and MAE by using response surface methodology (RSM). The optimal parameters were 370 K, 3.7 min, 1081 W microwave power, and 9.9 wt% NH4HCO3 consumption for the MEP and 1100 W microwave power, 2.5 wt% NaOH concentration, 34.6 min reaction time for MAE, respectively. Moreover, molecular dynamics (MD) simulation suggests that NaOH could significantly lower the work needed to peel off the xylan chain from cellulose nanofibril.


Assuntos
Celulose , Micro-Ondas , Polissacarídeos , Hidróxido de Sódio , Celulose/química
6.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 17-24, 2024 Feb 18.
Artigo em Chinês | MEDLINE | ID: mdl-38318891

RESUMO

OBJECTIVE: To explore the effects of different polymers on in vitro biomimetic mineralization of small intestinal submucosa (SIS) scaffolds, and to evaluate the physicochemical properties and biocompatibility of the SIS scaffolds. METHODS: The SIS scaffolds prepared by freeze-drying method were immersed in simulated body fluid (SBF), mineralized liquid containing polyacrylic acid (PAA) and mine-ralized liquid containing PAA and polyaspartic acid (PASP). After two weeks in the mineralized solution, the liquid was changed every other day. SBF@SIS, PAA@SIS, PAA/PASP@SIS scaffolds were obtained. The SIS scaffolds were used as control group to evaluate their physicochemical properties and biocompatibility. We observed the bulk morphology of the scaffolds in each group, analyzed the microscopic morphology by environment scanning electron microscopy and determined the porosity and pore size. We also analyzed the surface elements by energy dispersive X-ray spectroscopy (EDX), analyzed the structure of functional groups by Flourier transformed infrared spectroscopy (FTIR), detected the water absorption rate by using specific gravity method, and evaluated the compression strength by universal mechanical testing machine. The pro-cell proliferation effect of each group of scaffolds were evaluated by CCK-8 cell proliferation method. RESULTS: Under scanning electron microscopy, the scaffolds of each group showed a three-dimensional porous structure with suitable pore size and porosity, and crystal was observed in all the mineralized scaffolds of each group, in which the crystal deposition of PAA/PASP@SIS scaffolds was more regular. At the same time, the collagen fibers could be seen to thicken. EDX analysis showed that the characteristic peaks of Ca and P were found in the three groups of mineralized scaffolds, and the highest peaks were found in the PAA/PASP@SIS scaffolds. FTIR analysis proved that all the three groups of mineralized scaffolds were able to combine hydroxyapatite with SIS. All the scaffolds had good hydrophilicity. The compressive strength of the mineralized scaffold in the three groups was higher than that in the control group, and the best compressive strength was found in PAA/PASP@SIS scaffold. The scaffolds of all the groups could effectively adsorb proteins, and PAA/PASP@SIS group had the best adsorption capacity. In the CCK-8 cell proliferation experiment, the PAA/PASP@SIS scaffold showed the best ability to promote cell proliferation with the largest number of living cells observed. CONCLUSION: Compared with other mineralized scaffolds, PAA/PASP@SIS scaffolds prepared by mineralized solution containing both PAA and PASP have better physicochemical properties and biocompatibility and have potential applications in bone tissue engineering.


Assuntos
Polímeros , Alicerces Teciduais , Alicerces Teciduais/química , Polímeros/química , Biomimética , Sincalida , Engenharia Tecidual/métodos , Intestino Delgado , Porosidade
7.
Nat Commun ; 15(1): 337, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184634

RESUMO

Photocatalytic overall water splitting into hydrogen and oxygen is desirable for long-term renewable, sustainable and clean fuel production on earth. Metal sulfides are considered as ideal hydrogen-evolved photocatalysts, but their component homogeneity and typical sulfur instability cause an inert oxygen production, which remains a huge obstacle to overall water-splitting. Here, a distortion-evoked cation-site oxygen doping of ZnIn2S4 (D-O-ZIS) creates significant electronegativity differences between adjacent atomic sites, with S1 sites being electron-rich and S2 sites being electron-deficient in the local structure of S1-S2-O sites. The strong charge redistribution character activates stable oxygen reactions at S2 sites and avoids the common issue of sulfur instability in metal sulfide photocatalysis, while S1 sites favor the adsorption/desorption of hydrogen. Consequently, an overall water-splitting reaction has been realized in D-O-ZIS with a remarkable solar-to-hydrogen conversion efficiency of 0.57%, accompanying a ~ 91% retention rate after 120 h photocatalytic test. In this work, we inspire an universal design from electronegativity differences perspective to activate and stabilize metal sulfide photocatalysts for efficient overall water-splitting.

8.
Nat Commun ; 15(1): 260, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177119

RESUMO

The electrochemical conversion of nitrate to ammonia is a way to eliminate nitrate pollutant in water. Cu-Co synergistic effect was found to produce excellent performance in ammonia generation. However, few studies have focused on this effect in high-entropy oxides. Here, we report the spin-related Cu-Co synergistic effect on electrochemical nitrate-to-ammonia conversion using high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. In contrast, the Li-incorporated MgCoNiCuZnO exhibits inferior performance. By correlating the electronic structure, we found that the Co spin states are crucial for the Cu-Co synergistic effect for ammonia generation. The Cu-Co pair with a high spin Co in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O can facilitate ammonia generation, while a low spin Co in Li-incorporated MgCoNiCuZnO decreases the Cu-Co synergistic effect on ammonia generation. These findings offer important insights in employing the synergistic effect and spin states inside for selective catalysis. It also indicates the generality of the magnetic effect in ammonia synthesis between electrocatalysis and thermal catalysis.

9.
Med Res Rev ; 44(2): 738-811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37990647

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.


Assuntos
COVID-19 , Vacinas , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , SARS-CoV-2 , Estado Terminal , Citocinas , Antivirais/farmacologia , Antivirais/uso terapêutico
10.
Mol Plant Microbe Interact ; 37(1): 15-24, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37856777

RESUMO

Oomycete pathogens secrete numerous crinkling and necrosis proteins (CRNs) to manipulate plant immunity and promote infection. However, the functional mechanism of CRN effectors is still poorly understood. Previous research has shown that the Phytophthora sojae effector PsCRN108 binds to the promoter of HSP90s and inhibits their expression, resulting in impaired plant immunity. In this study, we found that in addition to HSP90, PsCRN108 also suppressed other Heat Shock Protein (HSP) family genes, including HSP40. Interestingly, PsCRN108 inhibited the expression of NbHSP40 through its promoter, but did not directly bind to its promoter. Instead, PsCRN108 interacted with NbCAMTA2, a negative regulator of plant immunity. NbCAMTA2 was a negative regulator of NbHSP40 expression, and PsCRN108 could promote such inhibition activity of NbCAMTA2. Our results elucidated the multiple roles of PsCRN108 in the suppression of plant immunity and revealed a new mechanism by which the CRN effector hijacked transcription factors to affect immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytophthora , Phytophthora/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Choque Térmico/metabolismo , Imunidade Vegetal , Doenças das Plantas
11.
Int J Oral Sci ; 15(1): 56, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072973

RESUMO

Recent studies have suggested that long-term application of anti-angiogenic drugs may impair oral mucosal wound healing. This study investigated the effect of sunitinib on oral mucosal healing impairment in mice and the therapeutic potential of Bifidobacterium breve (B. breve). A mouse hard palate mucosal defect model was used to investigate the influence of sunitinib and/or zoledronate on wound healing. The volume and density of the bone under the mucosal defect were assessed by micro-computed tomography (micro-CT). Inflammatory factors were detected by protein microarray analysis and enzyme-linked immunosorbent assay (ELISA). The senescence and biological functions were tested in oral mucosal stem cells (OMSCs) treated with sunitinib. Ligated loop experiments were used to investigate the effect of oral B. breve. Neutralizing antibody for interleukin-10 (IL-10) was used to prove the critical role of IL-10 in the pro-healing process derived from B. breve. Results showed that sunitinib caused oral mucosal wound healing impairment in mice. In vitro, sunitinib induced cellular senescence in OMSCs and affected biological functions such as proliferation, migration, and differentiation. Oral administration of B. breve reduced oral mucosal inflammation and promoted wound healing via intestinal dendritic cells (DCs)-derived IL-10. IL-10 reversed cellular senescence caused by sunitinib in OMSCs, and IL-10 neutralizing antibody blocked the ameliorative effect of B. breve on oral mucosal wound healing under sunitinib treatment conditions. In conclusion, sunitinib induces cellular senescence in OMSCs and causes oral mucosal wound healing impairment and oral administration of B. breve could improve wound healing impairment via intestinal DCs-derived IL-10.


Assuntos
Bifidobacterium breve , Interleucina-10 , Animais , Camundongos , Regulação para Cima , Inibidores da Angiogênese , Sunitinibe , Microtomografia por Raio-X , Administração Oral , Cicatrização , Anticorpos Neutralizantes
12.
ACS Appl Mater Interfaces ; 15(51): 59454-59462, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38102993

RESUMO

Atomically dispersed single-atom catalysts are intriguing catalysts in the field of electrocatalysis for nearly 100% exploitation of metal atoms. However, they are still far from practical usage due to the scaling relationship limit and metal loading limit. Generation of a diatomic complex would offer superior catalytic performance through the cooperation of two neighboring atoms as active sites. Herein, Fe/Co dual atomic sites embedded in a tube-on-plate hollow structure are designed and fabricated for an efficient electrochemical oxygen reduction reaction (ORR). The unique structure composed of ultrathin nanotube building blocks dramatically maximizes the surface area for copious active site exposure. Thanks to the synergetic interaction between Fe/Co pairs, the obtained FeCo/NC exhibits outstanding ORR activity and stability in alkaline media. Furthermore, density functional theory calculations have revealed that the remarkable activity is attributed to the electron-deficient Fe sites in FeCoN6. This work may pave the way for the innovative design of highly dispersed dual-site catalysts for broader applications in the realm of electrochemical catalysis.

13.
ACS Appl Mater Interfaces ; 15(40): 47531-47540, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37787377

RESUMO

Polypropylene (PP) has been widely used in health care and food packaging fields, however, it lacks antibacterial properties. Herein, we prepared the polymeric antibacterial agents (MPP-NDAM) by an in situ amidation reaction between 2,4-diamino-6-dialkylamino-1,3,5-triazine (NDAM) and maleic anhydride grafted polypropylene (MPP) using the melt grafting method. The effects of reaction time and monomer content on the grafting degree of N-halamine were investigated, and a grafting degree of 4.86 wt % was achieved under the optimal reaction conditions. PP/MPP-NDAM composites were further obtained by a melt blending process between PP and MPP-NDAM. With the adoption of surface segregation technology, the content of N-halamine structure on the surface of PP/MPP-NDAM composites was significantly increased. The antibacterial tests showed that the PP/MPP-NDAM composite could achieve 99.9% bactericidal activity against 1.0 × 107 CFU/mL of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 10 and 5 min of contact, respectively. The antibacterial effect became more pronounced with the prolongation of chlorinated time, and it could achieve 99.9% bactericidal activity against E. coli within merely 1 min of contact.


Assuntos
Escherichia coli , Polipropilenos , Polipropilenos/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química
14.
Colloids Surf B Biointerfaces ; 232: 113587, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844476

RESUMO

Bone tissue engineering scaffolds constructed from single-component organic materials have inherent limitations. Inspired by the hierarchical structure of physiological natural bone hard tissues, our research explores the construction of organic-inorganic composite scaffold for bone regeneration. In this study, we used a natural and readily obtainable extracellular matrix (ECM) material, i.e., decellularized small intestinal submucosa (SIS), to build the organic component of a phosphorylated hydroxyapatite nanocrystal-containing composite scaffold (nHA@SIS). Guided by polymer-induced liquid-precursor theory, we introduced a soluble inorganic mineralization solution to achieve an inorganic component of nHA@SIS. Using in situ mineralization, we successfully formed inorganic component within SIS and constructed nHA@SIS composite scaffold. We analyzed the physicochemical properties and the osteogenic role of nHA@SIS via a series of in vitro and in vivo studies. Compared with SIS scaffold, the nHA@SIS possessed suitable physicochemical properties, maintained the excellent cell activity of SIS and better guided reorganization of the cell skeleton, thereby achieving superior osteoconductivity and maintaining osteoinductivity at the protein and gene levels. Furthermore, the rat cranial defect area in the nHA@SIS scaffold group was mostly repaired after 12 weeks of implantation, with a larger amount of higher-density new bone tissue being visible at the edge and center than SIS and blank control group. This significantly improved in vivo osteogenic ability indicated the great potential of nHA@SIS for bone tissue engineering applications.


Assuntos
Biomimética , Osso e Ossos , Ratos , Animais , Regeneração Óssea , Matriz Extracelular/química , Alicerces Teciduais/química , Osteogênese , Engenharia Tecidual , Durapatita/farmacologia , Durapatita/química
15.
Appl Opt ; 62(20): 5508-5515, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706869

RESUMO

For effective wavefront management in the optical infrared range, dynamic all-dielectric metasurfaces, always based on phase transition materials, particularly G e 2 S b 2 T e 5 (GST), can be used. In this paper, we propose a GST-based tunable metasurface by structuring the phase-change material GST. We confirm that the nanopillar we designed has high transmittance in the wavelength band around 1550 nm and can fully cover the 0∼2π phase. Based on these characteristics, we can achieve beam steering and a focusing effect in amorphous phase by elaborately arranging GST nanopillars, while the aforementioned optical phenomena disappear in crystalline phase. Additionally, by arranging the array of vortex phases, we also realize switching the perfect composite vortex beam (PCVB) when changing the crystal state of GST, and simulate the generation of PCVB with different topological charges and sizes in amorphous phase. We believe that our research results can serve as a reference for multifunctional optical surfaces, dynamic optical control, optical communication, and information processing.

16.
J Chromatogr A ; 1706: 464264, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37562106

RESUMO

Hierarchical porous zeolitic imidazolate framework­8 (HpZIF-8) have not only good chemical and thermal stability, but also pore structures of different sizes. In this work, HpZIF-8 supported hollow-fiber liquid-phase microextraction (HpZIF-8@HF-LPME) co-modified with tributyl phosphate and 2-nitroethyl benzene was firstly developed for purification and enrichment of nine typical phenolic pollutants followed by electrophoretic separation and amperometric detection (CE-AD). The key enrichment parameters were optimized by full factorial experimental and central composite designs. Under the optimum conditions, the maximum enrichment factors for the nine analytes were 479 (phenol), 249 (2-chlorophenol), 821 (4-chlorophenol), 1253 (3-methylphenol), 1376 (2,4-dichlorophenol), 1078 (2,4,6-trichlorophenol), 200 (pentachlorophenol), 614 (4-nitrophenol) and1827 times (bisphenol A), respectively. The limits of detection were 0.060-1.5 µg L-1 (S/N = 3) in real sample matrixes. This proposed method has been successfully applied to water samples with high ionic strength, and the average recoveries were in the range of 80.2-118.0%. This developed method of HpZIF-8@HF-LPME/CE-AD needs no desorption and derivatization, providing an alternative for monitoring typical phenolic pollutants in water samples.


Assuntos
Poluentes Ambientais , Microextração em Fase Líquida , Poluentes Químicos da Água , Poluentes Ambientais/análise , Porosidade , Fenóis/análise , Eletroforese Capilar/métodos , Água/análise , Microextração em Fase Líquida/métodos , Poluentes Químicos da Água/análise
17.
Proc Natl Acad Sci U S A ; 120(28): e2305595120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399407

RESUMO

Inertia-less viscoelastic channel flow displays a supercritical nonnormal mode elastic instability due to finite-size perturbations despite its linear stability. The nonnormal mode instability is determined mainly by a direct transition from laminar to chaotic flow, in contrast to normal mode bifurcation leading to a single fastest-growing mode. At higher velocities, transitions to elastic turbulence and further drag reduction flow regimes occur accompanied by elastic waves in three flow regimes. Here, we demonstrate experimentally that the elastic waves play a key role in amplifying wall-normal vorticity fluctuations by pumping energy, withdrawn from the mean flow, into wall-normal fluctuating vortices. Indeed, the flow resistance and rotational part of the wall-normal vorticity fluctuations depend linearly on the elastic wave energy in three chaotic flow regimes. The higher (lower) the elastic wave intensity, the larger (smaller) the flow resistance and rotational vorticity fluctuations. This mechanism was suggested earlier to explain elastically driven Kelvin-Helmholtz-like instability in viscoelastic channel flow. The suggested physical mechanism of vorticity amplification by the elastic waves above the elastic instability onset recalls the Landau damping in magnetized relativistic plasma. The latter occurs due to the resonant interaction of electromagnetic waves with fast electrons in the relativistic plasma when the electron velocity approaches light speed. Moreover, the suggested mechanism could be generally relevant to flows exhibiting both transverse waves and vortices, such as Alfven waves interacting with vortices in turbulent magnetized plasma, and Tollmien-Schlichting waves amplifying vorticity in both Newtonian and elasto-inertial fluids in shear flows.

18.
Acta Biomater ; 169: 1-18, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517621

RESUMO

G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Membrana Celular/metabolismo , Nanotecnologia
19.
bioRxiv ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37502862

RESUMO

Decision-making emerges from distributed computations across multiple brain areas, but it is unclear why the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) to form optimal representations of task inputs. These optimal representations are sufficient to perform the task well, but minimal so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.

20.
Langmuir ; 39(28): 9903-9911, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37422798

RESUMO

After decades of research in the conservation of cultural heritage, nanolime (NL) has emerged as a potential alternative inorganic material to the frequently used organic materials. However, its poor kinetic stability in water has been a major challenge that restricted its penetration depth through cultural relics and resulted in unsatisfactory conservation outcomes. Here, for the first time, we realize NL water dispersion by modification of ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) via a sample aqueous solution deposit method. Our findings indicate that the cation of the ionic liquid (IL) binds strongly to the surface of NL particles (IL-NL) by forming hydrogen bonds with Ca(OH)2 facets. The absorption of IL causes an unexpected significant alteration in the morphology of NL particles and results in a drastic reduction in NL's size. More importantly, this absorption endows NL excellent kinetic stability dispersed into water and implements NL water dispersion, which makes a breakthrough in terms of extreme poor kinetic stability of as-synthesized NL and commercial NL in water. The mechanism driving IL-NL water dispersion is explained by Stern theory. In the context of consolidating weathered stone, the presence of IL may delay carbonation of NL but the penetration depth of IL-NL through stone samples is three times deeper than that of as-synthesized and commercial NLs. Additionally, the consolidation strength of IL-NL is similar to that of as-synthesized NL and commercial NL. Moreover, IL-NL has no significant impact on the permeability, pore size, and microstructure of consolidated stone relics. Our research contributes to the field of NL-related materials and will enhance the dissemination and utilization of NL-based materials in the preservation of water-insensitive cultural heritage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...