Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 39(3): 679-702, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34286406

RESUMO

Vincristine (VCR), an alkaloid isolated from vinca, is a commonly used chemotherapeutic drug. However, VCR therapy can lead to dose-dependent peripheral neurotoxicity, mainly manifesting as neuropathic pain, which is one of the dominant reasons for limiting its utility. Experimentally, we discovered that VCR-induced neuropathic pain (VINP) was accompanied by astrocyte activation; the upregulation of phospho-CaMKII (p-CaMKII), CaV3.2, and Connexin-43 (Cx43) expression; and the production and release of inflammatory cytokines and chemokines in the spinal cord. Similar situations were also observed in astrocyte cultures. Interestingly, these alterations were all reversed by intrathecal injection of KN-93 (a CaMKII inhibitor) or L-Ascorbic acid (a CaV3.2 inhibitor). In addition, KN-93 and L-Ascorbic acid inhibited the increase in [Ca2+]i associated with astrocyte activation. We also verified that knocking down or inhibiting Cx43 level via intrathecal injection of Cx43 siRNA or Gap27 (a Cx43 mimetic peptide) relieved pain hypersensitivity and reduced the release of inflammatory factors; however, they did not affect astrocyte activation or p-CaMKII and CaV3.2 expression. Besides, the overexpression of Cx43 through the transfection of the Cx43 plasmid did not affect p-CaMKII and CaV3.2 expressions in vitro. Therefore, CaMKII and CaV3.2 may activate astrocytes by increasing [Ca2+]i, thereby mediating Cx43-dependent inflammation in VINP. Moreover, we demonstrated that the CaMKII signalling pathway was involved in VCR-induced inflammation, apoptosis, and mitochondrial damage. Collectively, our findings show a novel mechanism by which CaMKII and CaV3.2 mediate Cx43-dependent inflammation by activating astrocytes in neuropathic pain induced by VCR.


Assuntos
Canais de Cálcio Tipo T , Neuralgia , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Vincristina/farmacologia , Vincristina/metabolismo , Vincristina/uso terapêutico , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/uso terapêutico , Astrócitos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo
2.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744848

RESUMO

Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hipertensão Pulmonar/etiologia , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Front Pharmacol ; 12: 771487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955843

RESUMO

Vincristine (VCR) is the first-line chemotherapeutic medication often co-administered with other drugs to treat childhood acute lymphoblastic leukemia. Dose-dependent neurotoxicity is the main factor restricting VCR's clinical application. VCR-induced peripheral neuropathy (VIPN) sometimes results in dose reduction or omission, leading to clinical complications or affecting the patient's quality of life. With regard to the genetic basis of drug responses, preemptive pharmacogenomic testing and simultaneous blood level monitoring could be helpful for the transformation of various findings into individualized therapies. In this review, we discussed the potential associations between genetic variants in genes contributing to the pharmacokinetics/pharmacodynamics of VCR and VIPN incidence and severity in patients with acute lymphoblastic leukemia. Of note, genetic variants in the CEP72 gene have great potential to be translated into clinical practice. Such a genetic biomarker may help clinicians diagnose VIPN earlier. Besides, genetic variants in other genes, such as CYP3A5, ABCB1, ABCC1, ABCC2, TTPA, ACTG1, CAPG, SYNE2, SLC5A7, COCH, and MRPL47, have been reported to be associated with the VIPN, but more evidence is needed to validate the findings in the future. In fact, a variety of complex factors jointly determine the VIPN. In implementing precision medicine, the combination of genetic, environmental, and personal variables, along with therapeutic drug monitoring, will allow for a better understanding of the mechanisms of VIPN, improving the effectiveness of VCR treatment, reducing adverse reactions, and improving patients' quality of life.

4.
Int Immunopharmacol ; 98: 107827, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34284341

RESUMO

The population pharmacokinetics (PPK) of tacrolimus (TAC) in children with refractory nephrotic syndrome (RNS) have not been well-characterized. This study aimed to investigate the significant factors affecting the TAC PPK characteristics of children with RNS and to optimize the dosing regimen. A total of 494 concentrations from 108 children were obtained from routine therapeutic drug monitoring between 2016 and 2018. Information regarding the demographic features, laboratory test results, genetic polymorphisms of CYP3A5 (rs776746) and co-therapy medications were collected. PPK analysis was performed using the nonlinear mixed-effects modelling (NONMEM) software and two modelling strategies (the linear one-compartment model and nonlinear Michaelis-Menten model) were evaluated and compared. CYP3A5 genotype, weight, daily dose of TAC and daily dose of diltiazem were retained in the final linear model. The absorption rate constant (Ka) was set at 4.48 h-1 in the linear model, and the apparent clearance (CL/F) and volume of distribution (V/F) in the final linear model were 14.2 L/h and 172 L, respectively. CYP3A5 genotype, weight and daily dose of diltiazem were the significant factors retained in the final nonlinear model. The maximal dose rate (Vmax) and the average steady-state concentration at half-Vmax (Km) in the final nonlinear model were 2.15 mg/day and 0.845 ng/ml, respectively. The nonlinear model described the pharmacokinetic data of TAC better than the linear model in children with RNS. A dosing regimen was proposed based on weight, CYP3A5 genotype and daily dose of diltiazem according to the final nonlinear PK model, which may facilitate individualized drug therapy with TAC.


Assuntos
Imunossupressores/administração & dosagem , Modelos Biológicos , Síndrome Nefrótica/tratamento farmacológico , Tacrolimo/administração & dosagem , Adolescente , Criança , Pré-Escolar , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Diltiazem/administração & dosagem , Diltiazem/farmacocinética , Cálculos da Dosagem de Medicamento , Monitoramento de Medicamentos/métodos , Resistência a Medicamentos , Feminino , Humanos , Imunossupressores/farmacocinética , Masculino , Síndrome Nefrótica/sangue , Síndrome Nefrótica/genética , Síndrome Nefrótica/imunologia , Dinâmica não Linear , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodos , Estudos Retrospectivos , Tacrolimo/farmacocinética
5.
Front Psychiatry ; 12: 780921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222104

RESUMO

Atomoxetine, a selective norepinephrine (NE) reuptake inhibitor, was approved for attention deficit/hyperactivity disorder (ADHD) treatment in children, adolescents and adults. We searched the database PubMed/MEDLINE (2000 to October 1, 2021). Only publications in English were considered. Atomoxetine inhibits the presynaptic norepinephrine transporter (NET), preventing the reuptake of NE throughout the brain along with inhibiting the reuptake of dopamine in specific brain regions such as the prefrontal cortex (PFC). The novel mechanism of atomoxetine also includes several new brain imaging studies and animal model studies. It is mainly metabolized by the highly polymorphic drug metabolizing enzyme cytochrome P450 2D6 (CYP2D6). Atomoxetine is effective and generally well tolerated. ADHD is often accompanied by multiple comorbidities. A series of studies have been published suggesting that atomoxetine is effective in the treatment of ADHD symptoms for children with various types of comorbidity. In some cases, it is possible that atomoxetine may have a positive influence on the symptoms of comorbidities. Atomoxetine can be administered either as a single daily dose or split into two evenly divided doses, and has a negligible risk of abuse or misuse. The latest guideline updated that clinical dose selection of atomoxetine was recommended based on both CYP2D6 genotype and the peak concentration. To have a more comprehensive understanding of atomoxetine, this review sets the focus on the mechanism, clinical efficacy and dosage regimen in detail, and also touches on those studies regarding adverse reactions of atomoxetine.

6.
Neurotoxicology ; 81: 161-171, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053366

RESUMO

Vincristine (VCR), an alkaloid extracted from vinca, is often used in combination with other chemotherapeutic drugs to treat a variety of cancers, such as acute lymphoblastic leukaemia (ALL), malignant lymphoma, and neuroblastoma. However, VCR possesses dose-dependent neurotoxicity, which is the main factor restricting its application. Vincristine-induced peripheral neuropathy (VIPN) not only limits the dose of VCR and leads to the discontinuation of treatment but also triggers serious damage to the physical and mental health of patients. In addition, VIPN brings huge healthcare costs to patients and society. Individuals with VIPN often exhibit mechanical allodynia, sensory/tactile disorders, and numbness in the hands and feet. Unfortunately, VIPN is easily ignored due to its variable symptoms, which gives rise to insufficient research on the aetiology and pathogenesis of this disease, thereby resulting in a lack of appropriate preventive and therapeutic management. We performed a comprehensive review of the latest findings on VIPN in terms of symptoms, risk factors, potential mechanisms, and prevention and treatment measures. The purpose was to help clinicians better understand and accurately diagnose VIPN, select appropriate intervention measures and reduce the damage to cancer patients.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Síndromes Neurotóxicas/etiologia , Nervos Periféricos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Vincristina/efeitos adversos , Animais , Humanos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Medição de Risco , Fatores de Risco
7.
Brain Res Bull ; 164: 269-288, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916221

RESUMO

10-O-(N, N-dimethylaminoethyl) ginkgolide B methanesulfonate (XQ-1H), a novel analog of ginkgolide B, has been preliminarily recognized to show bioactivities against ischemia-induced injury. However, the underlying mechanism still remains to be fully elucidated. The aim of this study was to investigate the effect of XQ-1H against cerebral ischemia/reperfusion injury (CIRI) from the perspective of blood brain barrier (BBB) protection, and explore whether the underlying mechanism is associated with Wnt/GSK3ß/ß-catenin signaling pathway activation. The therapeutic effects of XQ-1H were evaluated in mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and in immortalized mouse cerebral endothelial cells (bEnd.3) challenged by oxygen and glucose deprivation/reoxygenation (OGD/R). Results showed that treatment with XQ-1H improved neurological behavior, reduced brain infarction volume, diminished edema, and attenuated the disruption of BBB in vivo. In vitro, XQ-1H increased cell viability and maintained the barrier function of bEnd.3 monolayer after OGD/R. Moreover, the protection of XQ-1H was accompanied with activation of Wnt/GSK3ß/ß-catenin pathway and upregulation of tight junction proteins. Notably, the protection of XQ-1H was abolished by Wnt/GSK3ß/ß-catenin inhibitor XAV939 or ß-catenin siRNA, indicating XQ-1H exerted protection in a Wnt/GSK3ß/ß-catenin dependent profile. In summary, XQ-1H attenuated brain injury and maintained BBB integrity after CIRI, and the possible underlying mechanism may be related to the activation of Wnt/GSK3ß/ß-catenin pathway and upregulation of tight junction proteins.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Ginkgolídeos/farmacologia , AVC Isquêmico/metabolismo , Lactonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , beta Catenina/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-32655666

RESUMO

This research was designed to explore the effect of Ma Xing Shi Gan decoction (MXD) in alleviating particulate matter less than 2.5 µm in diameter (PM2.5) induced lung injury from the perspective of epithelial barrier protection and inhibition of epithelial-to-mesenchymal transition (EMT). Rats were exposed to PM2.5 to establish a lung injury model in vivo, and a PM2.5-stimulated primary cultured type II alveolar epithelial cell model was introduced in vitro. Our results indicated that MXD alleviated the weight loss and pathologic changes and improved the epithelial barrier dysfunction. MXD also significantly inhibited the TGF-ß/Smad3 pathway, increased the level of ZO-1 and claudin-5, and reversed the EMT process. Notably, the protection of MXD was abolished by TGF-ß in vitro. Our results indicated that MXD has a protection against PM2.5-induced lung injury. The proposed mechanism is reversing PM2.5-induced EMT through inhibiting TGF-ß/Smad3 pathway and then upregulating the expression of tight-junction proteins.

9.
Eur J Med Chem ; 192: 112174, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113049

RESUMO

A series of 1,6-naphthyridinone-based MET kinase inhibitors bearing quinoline moiety in block A were designed and synthesized based on the structures of Cabozantinib and our reported compound IV. Extensive SAR and DMPK studies led to the identification of 20j, a potent and orally bioavailable MET kinase inhibitor with favorable kinase selectivity. More importantly, 20j exhibited statistically significant tumor growth inhibition (Tumor growth inhibition/TGI of 131%, 4/6 partial regression/PR) in the U-87 MG xeograft model, which is superior to that of Cabozantinib (TGI of 97%, 2/6 PR), and significantly better than that of compound IV (TGI of 15%, 0/6 PR) at the same dose (12.5 mg/kg). Combined with favorable in vitro potency, kinase selectivity, pharmacokinetic profile and in vivo efficacy, the promising antitumor drug candidate 20j has subsequently advanced into preclinical research.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Quinolinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
10.
Front Pharmacol ; 10: 1361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798456

RESUMO

Ma Xing Shi Gan Decoction (MXD), a classical traditional Chinese medicine prescription, is widely used for the treatment of upper respiratory tract infection. However, the effect of MXD against particulate matters with diameter of less than 2.5 µm (PM2.5) induced lung injury remains to be elucidated. In this study, rats were stimulated with PM2.5 to induce lung injury. MXD was given orally once daily for five days. Lung tissues were harvested to assess pathological changes and edema. Myeloperoxidase (MPO) activity and malonaldehyde (MDA) content in lung were determined to evaluate the degree of injury. To assess the barrier disruption, the bronchoalveolar lavage fluid (BALF) was collected to determine the total protein content and count the number of neutrophils and macrophages. For evaluating the activation of macrophage in lung tissue, CD68 was detected using immunohistochemistry (IHC). The levels of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß), and interleukin-6 (IL-6) in BALF and serum were measured. In vitro, a PM2.5-activated RAW 264.7 macrophages inflammatory model was introduced. To evaluate the protective effect of MXD-medicated serum, the cell viability and the release of inflammatory factors were measured. The effects of MXD on the High mobility group box-1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NFκB) pathway in lung tissue and RAW 264.7 cells were assessed by Western blot. For further confirming the protective effect of MXD was mediated by inhibiting the HMGB1/TLR4/NFκB pathway, RAW 264.7 cells were incubated with MXD-medicated serum alone or MXD-medicated serum plus recombinant HMGB1 (rHMGB1). MXD significantly ameliorated the lung injury in rats, as evidenced by decreases in the pathological score, lung edema, MPO activity, MDA content, CD68 positive macrophages number, disruption of alveolar capillary barrier and the levels of inflammatory factors. In vitro, MXD-medicated serum increased cell viability and inhibited the release of inflammatory cytokines. Furthermore, MXD treatment was found to inhibit HMGB1/TLR4/NFκB signal pathway both in vivo and in vitro. Moreover, the protection of MXD could be reversed by rHMGB1 in RAW 264.7. Taken together, these results suggest MXD protects rats from PM2.5 induced acute lung injury, possibly through the modulation of HMGB1/TLR4/NFκB pathway and inflammatory responses.

11.
J Cardiovasc Pharmacol ; 74(5): 379-388, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730559

RESUMO

Recent reports have established atherosclerosis (AS) as a major factor in the pathogenetic process of cardiovascular diseases such as ischemic stroke and coronary heart disease. Although the possible pathogenesis of AS remains to be elucidated, a large number of investigations strongly suggest that the inhibition of toll-like receptors (TLRs) alleviates the severity of AS to some extent by suppressing vascular inflammation and the formation of atherosclerotic plaques. As pattern recognition receptors, TLRs occupy a vital position in innate immunity, mediating various signaling pathways in infective and sterile inflammation. This review summarizes the available data on the research progress of AS and the latest antiatherosclerotic drugs associated with TLR pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Receptores Toll-Like/antagonistas & inibidores , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
12.
Neuroscience ; 418: 189-204, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31487541

RESUMO

JLX001, a novel compound with similar structure with cyclovirobuxine D (CVB-D), has been proved to exert therapeutical effects on permanent focal cerebral ischemia. However, the protective effects of JLX001 on cerebral ischemia/reperfusion (I/R) injury and its anti-apoptotic effects have not been reported. We investigated the efficacy of JLX001 in two pharmacodynamic tests (pre-treatment test and post-treatment) with rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The pharmacodynamic tests demonstrated that JLX001 ameliorated I/R injury by reducing infarct sizes and brain edema. The results of Morris water maze, neurological scores, cylinder test and posture reflex test implied that JLX001 improved the learning, memory and motor ability after MCAO/R in the long term. Anti-apoptotic effects of JLX001 and its regulation of cytosolic c-Jun N-terminal Kinases (JNKs) signal pathway were confirmed in vivo by co-immunofluorescence staining and western immunoblotting. Furthermore, primary cortical neuron cultures were prepared and exposed to oxygen glucose deprivation/reoxygenation (OGD/R) for in vitro studies. Cytotoxicity test and mitochondrial membrane potential (MMP) test showed that JLX001 enhanced cell survival rate and maintained MMP. Flow cytometry and TdT-mediated dUTP-X nick end labeling (TUNEL) staining demonstrated the anti-apoptotic effects of JLX001 in vitro. Likewise, JLX001 regulated JNK signal pathway in vivo, which was also confirmed by western immunoblotting. Collectively, this study presents the first evidence that JLX001 exerted protective effects against I/R injury by reducing neuronal apoptosis via down-regulating JNK signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Triterpenos/farmacologia , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Brain Res Bull ; 153: 162-170, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472184

RESUMO

(3ß,5α,16α,20S)-4,4,14-trimethyl-3,20-bis(methylamino)-9,19-cyclopregnan-16-ol-dihydrochloride (JLX-001), a structural analogue of cyclovirobuxine D (CVB-D), is a novel compound from synthesis. This study aims to confirm the therapeutic effects of JLX001 on ischemic stroke (IS) and research its induction of autophagy function via 5'-AMP-activated protein kinase (AMPK)-Human Serine/threonine-protein kinase (ULK1) signaling pathway activation. The therapeutic effects of JLX001 were evaluated by infarct sizes, brain edema, neurological scores and proportion of apoptotic neurons in Sprague-Dawley (SD) rats with middle cerebral artery occlusion/reperfusion (MCAO/R). The number of autophagosomes was obtained by transmission electron microscopy. The expression of LC3-II was measured by immunofluorescence. p-AMPK and activated ULK1 were detected by western blots. Results showed that JLX001 treatment markedly alleviated cerebral infarcts, edema, neurological scores and proportion of apoptotic neurons in MCAO/R rats. The number of autophagosomes was increased, accompanying with the increased expressions of LC3-II, p-AMPK and ULK1. In summary, JLX001 attenuates cerebral ischemia injury and the underlying mechanisms may relate to inducing autophagy via AMPK-ULK1 signaling pathway activation.


Assuntos
Autofagia/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Triterpenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Edema Encefálico , Infarto da Artéria Cerebral Média , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/uso terapêutico
14.
RSC Adv ; 9(31): 17591, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35532405

RESUMO

[This corrects the article DOI: 10.1039/C7RA08879E.].

15.
J Mol Neurosci ; 66(3): 342-355, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30276612

RESUMO

Ischemic stroke is one of the leading health issues and the major cause of permanent disability in adults worldwide. Energy depletion and hypoxia occurring after ischemic stroke result in cell death, which activates resident glia cells and promotes the peripheral immune cells breaching into brain performing various functions even contradictory effects. The infiltration of immune cells may mediate neuron apoptosis and escalate ischemic damage, while it enhances neuron repair, differentiation, and neuroregeneration. The central nervous system (CNS) is immune-privileged site as it is separated from the peripheral immune system by the blood-brain barrier (BBB). Pathologically, the diapedesis of peripheral immune cells to CNS is controlled by BBB and regulated by immune cells/endothelial interactions. As immune responses play a key role in modulating the progression of ischemic injury development, understanding the characteristics and the contribution on regulating inflammatory responses of glia cells and peripheral immune cells may provide novel approaches for potential therapies. This review summarizes the multistep process of periphery immune cell extravasation into brain parenchyma during immunosurveillance and chronic inflammation after ischemic stroke onset. Furthermore, the review highlights promising target intervention, which may promote the development of future therapeutics for ischemic stroke.


Assuntos
Isquemia Encefálica/imunologia , Linfócitos/imunologia , Neuroglia/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Barreira Hematoencefálica/metabolismo , Movimento Celular , Humanos
16.
Acta Pharmacol Sin ; 39(11): 1706-1715, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30266998

RESUMO

Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Berberine is a natural medicine with multiple beneficial biological activities. In this study, we explored the mechanisms underlying the neuroprotective action of berberine in mice subjected transient middle cerebral artery occlusion (tMCAO). Male mice were administered berberine (25, 50 mg/kg/d, intragastric; i.g.), glycyrrhizin (50 mg/kg/d, intraperitoneal), or berberine (50 mg/kg/d, i.g.) plus glycyrrhizin (50 mg/kg/d, intraperitoneal) for 14 consecutive days before tMCAO. The neurological deficit scores were evaluated at 24 h after tMCAO, and then the mice were killed to obtain the brain samples. We showed that pretreatment with berberine dose-dependently decreased the infarct size, neurological deficits, hispathological changes, brain edema, and inflammatory mediators in serum and ischemic cortical tissue. We revealed that pretreatment with berberine significantly enhanced uptake of 18F-fluorodeoxyglucose of ischemic hemisphere comparing with the vehicle group at 24 h after stroke. Furthermore, pretreatment with berberine dose-dependently suppressed the nuclear-to cytosolic translocation of high-mobility group box1 (HMGB1) protein, the cytosolic-to nuclear translocation of nuclear factor kappa B (NF-κB) and decreased the expression of TLR4 in ischemic cortical tissue. Moreover, co-administration of glycyrrhizin and berberine exerted more potent suppression on the HMGB1/TLR4/NF-κB pathway than berberine or glycyrrhizin administered alone. These results demonstrate that berberine protects the brain from ischemia-reperfusion injury and the mechanism may rely on its anti-inflammatory effects mediated by suppressing the activation of HMGB1/TLR4/NF-κB signaling.


Assuntos
Berberina/uso terapêutico , Proteína HMGB1/antagonistas & inibidores , Infarto da Artéria Cerebral Média/tratamento farmacológico , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Encéfalo/patologia , Edema Encefálico/tratamento farmacológico , Regulação para Baixo , Ácido Glicirrízico/uso terapêutico , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Infarto da Artéria Cerebral Média/etiologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Traumatismo por Reperfusão/complicações , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Biomed Pharmacother ; 106: 805-812, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29990874

RESUMO

(3ß,5α,16α,20S)-4,4,14-trimethyl-3,20-bis(methylamino)-9,19-cyclopregnan-16-ol-dihydrochloride (JLX001), a derivative of cyclovirobuxine D (CVB-D), is a novel compound from synthesis. This study aims to confirm the therapeutic effect of JLX001 on cerebral ischemia and researchits antiplatelet and antithrombosis activities via thromboxane (TXA2)/phospholipase C-ß-3(PLCß3)/protein kinase C (PKC) pathway suppression. The therapeutic effects of JLX001 was evaluated by infarct sizes, brain edema and neurological scores in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO). Brain TXA2 and prostacyclin (PGI2) were measured by enzyme-linked immunosorbentassay (ELISA). P-PLCß3and activated PKC were detected by immunohistochemical method. Adenosine diphosphate (ADP) or 9, 11-dieoxy-11α, 9α-epoxymethanoeprostaglandin F2α (U46619) was used as platelet agonist in the in vivo and in vitro platelet aggregation experiments. Clotting time and bleeding time were determined. Besides, two whole-animal experiments including arteriovenous shunt thrombosis and pulmonary thromboembolism model were conducted. Results showed that JLX001 treatment markedly alleviated cerebral infarcts, edema, and neurological scores in permanent middle cerebral artery occlusion (pMCAO) rats. Brain TXA2 level, p-PLCß3and activated PKC were decreased, while PGI2level had no significant change. Besides, JLX001 inhibited platelet aggregation induced by ADP or U46619 and exhibited anti-coagulation effects with a minor bleeding risk. In the two whole-animal experiments, JLX001 inhibited thrombus formation. In summary, JLX001 attenuates cerebral ischemia injury and the underlying mechanisms relate to inhibiting platelet activation and thrombus formation via TXA2/PLCß3/PKC pathway suppression.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/prevenção & controle , Trombose Intracraniana/prevenção & controle , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Aspirina/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Edema Encefálico/sangue , Edema Encefálico/patologia , Edema Encefálico/prevenção & controle , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Epoprostenol/metabolismo , Feminino , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Trombose Intracraniana/sangue , Trombose Intracraniana/enzimologia , Trombose Intracraniana/patologia , Masculino , Camundongos Endogâmicos ICR , Fosfolipase C beta/metabolismo , Inibidores da Agregação Plaquetária/uso terapêutico , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tromboxano A2/metabolismo , Triterpenos/uso terapêutico
18.
Life Sci ; 190: 68-77, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28964813

RESUMO

Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.


Assuntos
Analgésicos/uso terapêutico , Desenho de Fármacos , Neuralgia/tratamento farmacológico , Analgésicos/efeitos adversos , Analgésicos/farmacologia , Animais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antidepressivos/efeitos adversos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Descoberta de Drogas/métodos , Humanos , Neuralgia/fisiopatologia , Qualidade de Vida
19.
Eur J Pharmacol ; 810: 112-119, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28629736

RESUMO

1-(5-(1H-indol-5-yl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl)-N-methylmethanamine (KFP-H008),a novel and potent potassium-competitive acid blocker for the treatment of acid secretion related diseases, has not been reported previously. In this study, we demonstrated that KFP-H008 inhibits basal acid secretion, 2-deoxy-D-glucose- (2DG-) stimulated gastric acid secretion in rats. KFP-H008 blocked histamine-stimulated acid secretion in rats and heidenhain pouch dogs and reversed acid output in isolated gastric perfusion under histamine stimulation. In all the animal experiments, KFP-H008 exerted a more effective, potent and longer-lasting inhibitory action in comparison with lansoprazole, a proton pump inhibitor (PPI) commonly used in clinic. KFP-H008 inhibited H+-K+-ATPase activity both at pH 6.5 and pH 7.5, and was unaffected by pH. The inhibitory action was reversible and was achieved in a K+-competitive manner. Furthermore, KFP-H008 did not affect Na+-K+-ATPase activity, thus exhibiting high selectivity, which is different from PPIs. In all, KFP-H008, a novel potassium-competitive acid blocker, may provide new option for the patients with acid-related diseases and provide longer-lasting inhibitory action than drugs commonly used in clinical treatment.


Assuntos
Ácido Gástrico/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Indóis/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Animais , Histamina/farmacologia , Masculino , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley
20.
J Ethnopharmacol ; 207: 57-66, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28645780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Danshen is a crude herbal drug isolated from dried roots of Salvia miltiorrhiza Bunge. This plant is widely used in oriental medicine for the treatment of cardiovascular and cerebrovascular diseases. The supercritical CO2 extract from Danshen (SCED) (57.85%, 5.67% and 4.55% for tanshinone IIA, tanshinone I and cryptotanshinone respectively) was studied in this article, whose potential molecular mechanism remains unclear, especially in anti-thrombosis. AIM OF THE STUDY: The present study was designed to observe the protective effect of SCED on ischemic stroke in rats and to explore the underlying anti-thrombosis mechanism. MATERIALS AND METHODS: Following induction of cerebral ischemia in rats by permanent middle cerebral artery occlusion (pMCAO). Neurological defect score, cerebral blood flow, infarct size, and brain edema were measured to evaluate the injury. Arteriovenous shunt thrombosis model and adenosine 5'-diphosphate (ADP) induced acute pulmonary embolism model were conducted to estimate the antithrombotic effect of SCED. In order to investigate the effects of SCED on platelet aggregation, rat platelet-rich-plasma (PRP) were incubated with SCED prior to the addition of the stimuli (ADP or 9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α (U46619)). Aggregation was monitored in a light transmission aggregometer. Inhibitory effect of SCED on thromboxane A2 (TXA2) release was detected by ELISA kit. Phospholipase C (PLC)/ Protein kinase C (PKC) signaling pathway was analyzed by a Western blot technique. The effect of the SCED was also studied in vivo on bleeding time in mice. RESULTS: SCED improved the neurological defect score, increased cerebral blood flow, reduced infarct size and alleviated brain edema in rats exposed to pMCAO. After administration of SCED, thrombosis formation in arteriovenous shunt was inhibited and recovery time in pulmonary embolism was shortened. The inhibitory effect of SCED on platelet activation was further confirmed by TXB2 ELISA kit and Western blot analysis of PLC/PKC signaling pathway. CONCLUSIONS: SCED attenuates cerebral ischemic injury. The possible mechanism is that SCED inhibits thrombosis formation, platelet aggregation and activation of PLC/PKC pathway. On this basis, this new extract could be a promising agent to inhibit thrombosis formation and protect against cerebral ischemia injury.


Assuntos
Isquemia Encefálica/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Salvia miltiorrhiza/química , Acidente Vascular Cerebral/prevenção & controle , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ativação Plaquetária/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Trombose/tratamento farmacológico , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...