Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37761932

RESUMO

The cultivated peanut (Arachis hypogaea L.) is a significant oil and cash crop globally. Hundred-pod and -seed weight are important components for peanut yield. To unravel the genetic basis of hundred-pod weight (HPW) and hundred-seed weight (HSW), in the current study, a recombinant inbred line (RIL) population with 188 individuals was developed from a cross between JH5 (JH5, large pod and seed weight) and M130 (small pod and seed weight), and was utilized to identify QTLs for HPW and HSW. An integrated genetic linkage map was constructed by using SSR, AhTE, SRAP, TRAP and SNP markers. This map consisted of 3130 genetic markers, which were assigned to 20 chromosomes, and covered 1998.95 cM with an average distance 0.64 cM. On this basis, 31 QTLs for HPW and HSW were located on seven chromosomes, with each QTL accounting for 3.7-10.8% of phenotypic variance explained (PVE). Among these, seven QTLs were detected under multiple environments, and two major QTLs were found on B04 and B08. Notably, a QTL hotspot on chromosome A08 contained seven QTLs over a 2.74 cM genetic interval with an 0.36 Mb physical map, including 18 candidate genes. Of these, Arahy.D52S1Z, Arahy.IBM9RL, Arahy.W18Y25, Arahy.CPLC2W and Arahy.14EF4H might play a role in modulating peanut pod and seed weight. These findings could facilitate further research into the genetic mechanisms influencing pod and seed weight in cultivated peanut.


Assuntos
Arachis , Locos de Características Quantitativas , Humanos , Arachis/genética , Mapeamento Cromossômico , Marcadores Genéticos , Sementes/genética
2.
Phys Chem Chem Phys ; 25(33): 22319-22324, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578284

RESUMO

The combination of a flexible device and novel electromagnetic resonances offers new dimensions to manipulate electromagnetic waves and promises new device functionalities. In this study, we experimentally demonstrate a flexible metasurface that can support the bound state in the continuum (BIC) in the terahertz regime. The metasurface consists of toroidal dipole resonant units on top of the flexible polyimide substrate, which can support a terahertz Friedrich-Wintgen BIC resonance, and the resonance characteristics can be tuned by changing the parameters of the coupling unit among two resonant modes. The BIC resonances under different bending conditions are analyzed and compared, showing decent mechanical robustness. The sensing application is demonstrated by combining Fetal Bovine Serum with the flexible BIC metasurface. The measured minimum detectable concentration is 0.007 mg mL-1. Benefiting from the mechanical flexibility and BIC resonance characteristics, our approach can effectively manipulate terahertz waves and have potential applications in the realization of multifunctional and flexible photonic devices.

3.
Opt Lett ; 48(9): 2269-2272, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126251

RESUMO

Three-dimensional force-tactile sensors have attracted much attention for their great potential in the applications of human-computer interaction and bionic intelligent robotics. Herein, a flexible haptic sensor based on dual fiber Bragg gratings (FBGs) embedded in a bionic anisotropic material is proposed for the detection of 3D forces. To achieve the discrimination of normal and tangential force angles and magnitudes, FBGs were orthogonally embedded in a flexible silicone cylinder for force determination. Fe3O4 nanoparticles were used as a modifying agent to induce anisotropic elasticity of the silicone structure to improve the angle detection resolution. The results show that the flexible tactile sensor can detect the angle and magnitude of the 3D force.

4.
Sensors (Basel) ; 23(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37112484

RESUMO

In this work, we proposed a sensitivity-enhanced temperature sensor, a compact harmonic Vernier sensor based on an in-fiber Fabry-Perot Interferometer (FPI), with three reflective interfaces for the measurement of gas temperature and pressure. FPI consists of air and silica cavities formulated by single-mode optical fiber (SMF) and several short hollow core fiber segments. One of the cavity lengths is deliberately made larger to excite several harmonics of the Vernier effect that have different sensitivity magnifications to the gas pressure and temperature. The spectral curve could be demodulated using a digital bandpass filter to extract the interference spectrum according to the spatial frequencies of resonance cavities. The findings indicate that the material and structural properties of the resonance cavities have an impact on the respective temperature sensitivity and pressure sensitivity. The measured pressure sensitivity and temperature sensitivity of the proposed sensor are 114 nm/MPa and 176 pm/°C, respectively. Therefore, the proposed sensor combines ease of fabrication and high sensitivity, making it great potential for practical sensing measurements.

5.
J Biophotonics ; 16(4): e202200168, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36397661

RESUMO

Rapid screening for ischemic strokes in prehospital settings may improve patient outcomes by allowing early deployment of vascular recanalization therapies. However, there are no low-cost and convenient methods that can assess ischemic strokes in such a setting. Diffuse correlation spectroscopy (DCS) is a promising method for continuous, noninvasive transcranial monitoring of cerebral blood flow. In this study, we used a DCS system to detect cerebral hemodynamics before and after acute ischemic stroke in pigs. Seven adult porcines were chosen to establish ischemic stroke models via bilateral common carotid artery ligation (n = 5) or air emboli (n = 2). The results showed a significant difference in blood flow index (BFI) between the normal and ischemic groups. Relative blood flow index (rBFI) exhibited excellent results. Therefore, the diffuse optical method can assess the hemodynamic changes in acute cerebral ischemic stroke onset in pigs, and rBFI may be a promising biomarker for identifying cerebral ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Suínos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Isquemia Encefálica/diagnóstico por imagem , Hemodinâmica , Circulação Cerebrovascular
6.
Opt Express ; 30(11): 18238-18249, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221629

RESUMO

Terahertz sparse deconvolution based on an iterative shrinkage and thresholding algorithm (ISTA) has been used to characterize multilayered structures with resolution equivalent to or finer than the sampling period of the measurement. However, this method was only studied on thin samples to separate the overlapped echos that can't be distinguished by other deconvolution algorithms. Besides, ISTA heavily depends on the convolution matrix consisting of delayed incident pulse, which is difficult to precisely extricate from the reference signal, and thereby fluctuations caused by noise are occasionally treated as echos. In this work, a terahertz sparse deconvolution based on a learned iterative shrinkage and thresholding algorithm (LISTA) is proposed. The method enclosed the matrix multiplication and soft thresholding in a block and cascaded multiple blocks together to form a deep network. The convolution matrices of the network were updated by stochastic gradient descent to minimize the distance between the output sparse vector and the optimal sparse representation of the signal, and subsequently the trained network made more precise estimation of the echos than ISTA. Additionally, LISTA is notably faster than ISTA, which is important for real-time tomographic-image processing. The algorithm was evaluated on terahertz tomographic imaging of a high-density poly ethylene (HDPE) sample, revealing obvious improvements in detecting defects of different sizes and depths. This technique has potential usage in nondestructive testings of thick samples, where echos reflected by minor defects are not discernible by existed deconvolution algorithms.

7.
Micromachines (Basel) ; 13(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36014111

RESUMO

This paper presents the design, simulation, fabrication, assembly, and testing of a miniature thermo-pneumatic optofluidic lens. The device comprises two separate zones for air heating and fluid pressing on a flexible membrane. A buried three-dimensional spiral microchannel connects the two zones without pumps or valves. The three-dimensional microfluidic structure is realized using a high-resolution three-dimensional printing technique. Multi-physics finite element simulations are introduced to assess the optimized air chamber design and the low-temperature gradient of the optical liquid. The tunable lens can be operated using a direct-current power supply. The temperature change with time is measured using an infrared thermal imager. The focal length ranges from 5 to 23 mm under a maximum voltage of 6 V. Because of the small size and robust actuation scheme, the device can potentially be integrated into miniature micro-optics devices for the fine-tuning of focal lengths.

8.
Nanomaterials (Basel) ; 12(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745458

RESUMO

Terahertz (THz) spectroscopy is the de facto method to study the vibration modes and rotational energy levels of molecules and is a widely used molecular sensor for non-destructive inspection. Here, based on the THz spectra of 20 amino acids, a method that extracts high-dimensional features from a hybrid spectrum combined with absorption rate and refractive index is proposed. A convolutional neural network (CNN) calibrated by efficient channel attention (ECA) is designed to learn from the high-dimensional features and make classifications. The proposed method achieves an accuracy of 99.9% and 99.2% on two testing datasets, which are 12.5% and 23% higher than the method solely classifying the absorption spectrum. The proposed method also realizes a processing speed of 3782.46 frames per second (fps), which is the highest among all the methods in comparison. Due to the compact size, high accuracy, and high speed, the proposed method is viable for future applications in THz chemical sensors.

9.
Opt Express ; 29(8): 12712-12722, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33985022

RESUMO

Active control of terahertz waves is a critical application for terahertz devices. Silicon is widely used in large-scale integrated circuit and optoelectronic devices, and also shows great potential in the terahertz field. In this paper, a p-Si hybrid metasurface device is proposed and its terahertz characteristics under avalanche breakdown effect is investigated. In the study, a plasmon-induced transparency (PIT) effect caused by the near-field coupling of the bright mode and the dark mode is observed in the transmission spectrum. Due to avalanche breakdown effect, the resonance of the PIT metamaterial disappears as the current increased. Carriers existed in the interface between the metasurface and substrate result to a dipole resonance suppression. When the current continues increasing, the maximal modulation depth can reach up to 99.9%, caused by the avalanche effect of p-Si. Experimental results demonstrate that the avalanche breakdown p-Si can achieve a performance modulation depth, bringing much more possibilities for terahertz devices.

10.
Interdiscip Sci ; 13(1): 140-146, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33185845

RESUMO

A workable approach named xTB-sTDDFT was selected to investigate the excited-state spectra of oxytocin (135 atoms), GHRP-6 (120 atoms) and insulin (793 atoms). Three different Hartree-Fock components functionals (wB97XD3: 51%, LC-BLYP: 53%, wB97X: 57%) were used to calculate the excitation spectra, and the results calculated by wB97XD3 functional well agree with the experiments. It's a deep impression that computed time cost reduced by more than 80%. For polypeptide (oxytocin and GHRP-6), both UV and fluorescence spectra were obtained, and the errors between the calculated and experimental values approximately were 20 nm. For Insulin, the errors are within 15 nm. UV spectrum peak is λcal = 262 nm (λexp = 277 nm, Δλ = 15 nm), and fluorescence spectrum peak is λcal = 294 nm (λexp = 304 nm, Δλ = 10 nm). In summary, a suitable theoretical model is established to ultra-fast calculate the electronic excitation spectra of large systems, such as proteins and biomacromolecules, with good calculation accuracy, fast calculation speed and low cost.


Assuntos
Proteínas/química , Espectrometria de Fluorescência
11.
ACS Omega ; 5(33): 20765-20772, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32875210

RESUMO

A high-quality X-ray source was proposed by modifying the target material structure characteristics driven by ultrahigh laser energy. The experiments were performed on the Ti:sapphire femtosecond laser beam device (4.3-6 J, 30 fs), one of the three XG-III lasers in Laser Fusion Research Center of China Academy of Engineering Physics. The femtosecond laser beam drove the nanowire copper material with an average length of 18-50 µm and a diameter of about 260 nm. A single-photon counting charge-coupled device was employed to measure the copper Kα X-ray emission of the nanowire and foil targets. A clear maximum photon yield of the nanowire target was calculated to be 3.6 × 108 photons sr-1 s-1, the conversion efficiency was up to 0.0087%, and the average yield was 2.5 times that of the copper foil targets. In addition, by using a pinhole imaging method of φ10 µm, the minimum full width at half maximum spot size of the X-ray source was calculated in the range of 85-240 µm, which was similar to that of the copper foil material with a long radius of 170 µm and a short radius of 63 µm. The experimental data illustrate that the nanowire has the potential to enhance the energy absorption of femtosecond laser for X-ray conversion and backlight imaging.

12.
Interdiscip Sci ; 12(4): 530-536, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979147

RESUMO

Using Gaussian and Orca, UV and fluorescence spectra of three amino acids (Tyr: Tyrosine, Trp: Tryptophan, Phe: Phenylalanine) were calculated by different functionals (B3LYP, BP86, wB97X). The spectra calculated by BP86 are consistent with the experiments. UV spectra peak of Tyr is 255 nm (Exp. 275 nm, Δλ = 20 nm), Trp is 279 nm (Exp. 277 nm, Δλ = 2 nm), and Phe is 275 nm (Exp. 257 nm, Δλ = 18 nm). Fluorescence spectra peak of Trp is 341 nm (Exp. 350 nm, Δλ = 9 nm), Tyr is 295 nm (Exp. 306 nm, Δλ = 11 nm), and Phe is 285 nm (Exp. 302 nm, Δλ = 17 nm). Moreover, a theoretical model for calculating the excited states of biomolecules is established. Compared with Gaussian's results, Orca is more quickly and effectively for calculating excited state spectra with the same accuracy.


Assuntos
Aminoácidos Aromáticos/química , Aminoácidos , Fenilalanina , Espectrometria de Fluorescência , Triptofano , Tirosina
13.
Opt Express ; 28(12): 17979-17987, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679999

RESUMO

To quickly evaluate holographic photopolymers with different formulations, the most effective method is to record a volume holographic grating in the samples and detect the grating's diffraction in real time. Since the volume grating is highly sensitive to incident angle, existing schemes need to precisely control many space-related parameters. This study proposes an improved scheme, in which two different sized spots are used to reduce the requirements for the overlap of the two spots and the installation precision of the samples. Transmittances, diffractive efficiencies and diffractive asymmetries are obtained at a high sampling rate, through a specifically designed algorithm with the data from uncalibrated high-speed photodiodes. The experimental results show that the proposed scheme performance well in evaluating holographic photopolymer.

14.
Light Sci Appl ; 9: 99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549979

RESUMO

Terahertz (THz) waves show great potential in nondestructive testing, biodetection and cancer imaging. Despite recent progress in THz wave near-field probes/apertures enabling raster scanning of an object's surface, an efficient, nonscanning, noninvasive, deep subdiffraction imaging technique remains challenging. Here, we demonstrate THz near-field microscopy using a reconfigurable spintronic THz emitter array (STEA) based on the computational ghost imaging principle. By illuminating an object with the reconfigurable STEA followed by computing the correlation, we can reconstruct an image of the object with deep subdiffraction resolution. By applying an external magnetic field, in-line polarization rotation of the THz wave is realized, making the fused image contrast polarization-free. Time-of-flight (TOF) measurements of coherent THz pulses further enable objects at different distances or depths to be resolved. The demonstrated ghost spintronic THz-emitter-array microscope (GHOSTEAM) is a radically novel imaging tool for THz near-field imaging, opening paradigm-shifting opportunities for nonintrusive label-free bioimaging in a broadband frequency range from 0.1 to 30 THz (namely, 3.3-1000 cm-1).

15.
Neurophotonics ; 6(3): 035013, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31548976

RESUMO

In a pilot study of 11 healthy adults (24 to 39 years, all male), we characterize the influence of external probe pressure on optical diffuse correlation spectroscopy (DCS) measurements of pulsatile blood flow obtained on the forearm and forehead. For external probe pressure control, a hand inflatable air balloon is inserted between the tissue and an elastic strap. The air balloon is sequentially inflated to achieve a wide range of external probe pressures between 20 and 250 mmHg on the forearm and forehead, which are measured with a flexible pressure sensor underneath the probe. At each probe pressure, the pulsatility index (PI) of arteriole blood flow on the forehead and forearm is measured with DCS (2.1-cm source-detector separation). We observe a strong correlation between probe pressure and PI on the forearm ( R = 0.66 , p < 0.001 ), but not on the forehead ( R = - 0.11 , p = 0.4 ). The forearm measurements demonstrate the sensitivity of the DCS PI to skeletal muscle tissue pressure, whereas the forehead measurements indicate that DCS PI measurements are not sensitive to scalp tissue pressure. Note, in contrast to pulsatility, the time-averaged DCS blood flow index on the forehead was significantly correlated with probe pressure ( R = - 0.55 , p < 0.001 ). This pilot data appears to support the initiation of more comprehensive clinical studies on DCS to detect trends in internal pressure in brain and skeletal muscle.

16.
Opt Express ; 27(14): 19583-19595, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503716

RESUMO

The range of exposure for which the holographic reciprocity law holds in photopolymers, is mainly dependent on the light exposure intensity and polymerization rate between photo-initiator and monomers. Matching this is the key to improving performance. Characterization of the dependence on diffraction efficiency of the volume transmission gratings on holographic reciprocity matching of TI/PMMAs under different milliseconds with different thickness (1-3mm) has been carried out for the novel high-sensitive TI/PMMA polymers. Diffraction gratings can be recorded in TI/PMMAs under 20ms with the exposure intensity of 115mW/cm2. The physical and chemical mechanism under and after single shot exposure is analyzed which can be divided into three parts, namely, photo-induced polymerization, dark diffusion of photosensitive molecules, and counter-diffusion of photoproducts. Holographic properties of TI/PMMAs of different thickness (1-3mm) under different shingle-shot durations and repetition rates are investigated in detail as well. The diffraction efficiency reaches 67% with the response time of 15.69s. By this way, volume holographic gratings with no reciprocity failure can be recorded under multi-pulse exposure, with high grating strength and rapid sensitivity in TI/PMMAs, which indicates the volume holographic memories have the potential for recording and storing transient information in life and in the military.

17.
Opt Lett ; 44(7): 1630-1633, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933108

RESUMO

We report a high-performance terahertz (THz) modulator with dual operation mode. For the pulse operation mode, the proposed THz modulator has the advantage of high modulation depth (MD) and can operate in a broadband frequency range. We have experimentally achieved a MD larger than 90% for the fifth-order pulse THz echo at 0.8 THz, and the MD stays larger than 75% in a broadband frequency range larger than 1 THz, whereas, for the coherent operation mode, the Fabry-Perot (F-P) interference effect has been taken into consideration and a MD larger than 75% at 0.76 THz has also been realized.

18.
Opt Lett ; 44(1): 21-24, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645535

RESUMO

We demonstrate terahertz (THz) wave near-field imaging with a spatial resolution of ∼4.5 µm using single-pixel compressive sensing enabled by femtosecond-laser (fs-laser) driven vanadium dioxide (VO2)-based spatial light modulator. By fs-laser patterning a 180 nm thick VO2 nanofilm with a digital micromirror device, we spatially encode the near-field THz evanescent waves. With single-pixel Hadamard detection of the evanescent waves, we reconstructed the THz wave near-field image of an object from a serial of encoded sequential measurements, yielding improved signal-to-noise ratio by one order of magnitude over a raster-scanning technique. Further, we demonstrate that the acquisition time was compressed by a factor of over four with 90% fidelity using a total variation minimization algorithm. The proposed THz wave near-field imaging technique inspires new and challenging applications such as cellular imaging.

19.
Opt Express ; 26(21): 28051-28066, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469861

RESUMO

Ultrafast detection and switching of light are key processes in high-speed optoelectronic devices. However, the performances of VO2-based optoelectronics are strongly degraded by photothermal. The mechanism of the latter is still unclear. Here, by using femtosecond-laser (fs-laser) driven kinetic terahertz wave absorption, we quantitatively separate slow photothermal response and ultrafast photodoping response (e.g. light-induced insulator-to-metal transition) from second- to picosecond-timescales, and discover the competing interplay between them. With self-photothermal (mainly determined by fs-laser pulse repetition rate and pump fluence), the ultrafast transition time was degraded by 190% from 50 ps to 95 ps, the ultrafast transition threshold was decreased to 82% from 11mJ/cm2 to 9mJ/cm2, while the amplitudes of the two photoresponse are competing. Percolation theory, along with the macroscopic conductivity response, is used to explain the competing interplay. Our findings are relevant for designing and optimizing VO2-based ultrafast optoelectronic devices.

20.
Opt Express ; 26(23): 30655-30666, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469959

RESUMO

We proposed an ultrasensitive specific terahertz sensor consisting of two sets of graphene micro-ribbon with different widths. The interference between the plasmon resonances of the wide and narrow graphene micro-ribbons gives rise to the plasmon induced transparency (PIT) effect and enables ultrasensitive sensing in terahertz region. The performances of the PIT sensor have been analyzed in detail considering the thickness and refractive index sensing applications using full wave electromagnetic simulations. Taking advantage of the electrical tunability of graphene's Fermi level, we demonstrated the specific sensing of benzoic acid with detection limit smaller than 6.35 µg/cm2. The combination of specific identification and enhanced sensitivity of the PIT sensor opens exciting prospects for bio/chemical molecules sensing in the terahertz region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...