Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733838

RESUMO

Forests, the ancient wooden giants, are both symbols of natural beauty and reservoirs of carbon stocks. The current climate crisis has created an urgent need for an in-depth study of forest ecosystems and carbon stocks. Based on forest inventory data from field surveys and four bioclimatic zones [Zone 1 (Z1, humid forest), Zone 2 (Z2, semi-humid forest), Zone 3 (Z3, semi-humid to semi-arid forest-grassland), and Zone 4 (Z4, semi-arid typical grassland)], two methods [Method 1 (M1) and Method 2 (M2)] were used to estimate carbon stocks in forest ecosystems in Shaanxi Province, China, and explored the spatial patterns of carbon pools and potential influences. The total forest ecosystem carbon pool amounted to 520.80 Tg C, of which 53.60% was stored aboveground, 17.16% belowground, and 29.24% in soil (depth of 0-10 cm). Spatially, there were marked north-south gradients in both biomass (Z2 > Z3 > Z1 > Z4) and soil organic carbon densities (Z1 > Z2 > Z3 > Z4). The differences between aboveground and belowground biomass carbon density across broadleaf, needle-leaf, and broadleaf and needle-leaf mixed forest were not pronounced, while soil organic carbon density had the order of broadleaf (18.38 Mg C/ha) > needle-leaf (11.29 Mg C/ha) > broadleaf and needle-leaf mixed forest (10.33 Mg C/ha). Under an ideal scenario that excludes external factors, mainly forest growth, the sequestration potential of forest biomass by 2032 was estimated by M1 as 85.43 Tg, and by M2 to be substantially higher at 176.21 Tg. As of 2062, M1 estimated 155.97 Tg of sequestration potential for forest biomass. The spatial patterns of forest biomass and soil carbon density were closely related to climatic factors, and these relationships allowed the spatial division into two distinct climatic regions. Moreover, biomass carbon density was significantly correlated with the normalized difference vegetation index, soil silt, and elevation. This study provides key information for promoting the strategic shift from light-green to deep-green forest systems in Shannxi Province and updates the estimation methods of forest ecosystems' carbon pools based on field surveys.


Assuntos
Biomassa , Sequestro de Carbono , Carbono , Ecossistema , Florestas , Solo , Carbono/análise , Solo/química , China
2.
J Agric Food Chem ; 72(13): 7457-7463, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527909

RESUMO

The discovery of a lead compound is fundamental to herbicide innovation, but the limited availability of valuable lead compounds has hindered their development in recent years. By utilizing the structural diversity-oriented inactive group strategy, 3-(2-pyridyl)-benzothiazol-2-one was identified as a promising lead scaffold for herbicides, starting from benzothiazole which is an inactive moiety commonly found in herbicides such as mefenacet, benazolin, benzthiazuron, and fenthiaprop-ethyl. To investigate the structure-activity relationship (SAR) of these chemicals, a series of 2-(2-oxo-3-pyridyl-benzothiazol-6-yloxy)hexanoic acid derivatives (VI01 ∼ VI28) were synthesized through classical nucleophilic SNAr reaction using halogenated pyridines and 6-methoxybenzothiazole-2-one. The chemical structures of all the title compounds were confirmed by NMR and MS analysis. Petri dish assays indicated that many compounds exhibited potent herbicidal activity against both broad-leaf weeds and grass weeds at 1.0 mg/L. The SAR analysis revealed that the presence of a trifluoromethyl group at the 5-position of pyridine is essential for herbicidal activity. Furthermore, carboxylic esters exhibit higher herbicidal activity compared to carboxylic amides and free acids, and the activity decreased with the extension of the carbon chain. The postemergence herbicidal activity of VI03 against 16 species of weeds was tested by pot experiments in a greenhouse. VI03 demonstrated comparable efficacy in controlling broadleaf weeds and superior efficacy in controlling grass weeds compared to carfentrazone ethyl. The present study has unveiled a novel molecular scaffold exhibiting remarkably potent herbicidal activity. These findings are anticipated to provide valuable insights for the advancement of new herbicides and offer an alternative approach for managing resistant weeds.


Assuntos
Herbicidas , Herbicidas/química , Caproatos , Relação Estrutura-Atividade , Plantas Daninhas , Poaceae
3.
Pest Manag Sci ; 80(6): 2639-2646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38288581

RESUMO

BACKGROUND: The discovery of lead compounds is fundamental to herbicide innovation, yet the limited availability of valuable lead compounds has impeded their progress in recent years. The study presents a novel molecular scaffold that exhibits remarkably potent herbicidal activity. RESULTS: Through a scaffold-hopping strategy, a highly potent lead compound for herbicides, namely 3-(2-pyridinyl)-benzothiazol-2-one, was unexpectedly discovered during attempts to structurally modify haloxyfop, a commercial aryl-oxy-phenoxy-propionate herbicide. To investigate the structure-activity relationship (SAR) of the newly discovered herbicidal chemicals, a series of 2-(2-oxo-3-(pyridin-2-yl)-2,3-dihydrobenzo[d]thiazol-6-yloxy)propanoic acid derivatives, I-01 ~ I-27, were designed and synthesized. SAR analysis revealed that trifluoromethyl at the 5-position of pyridine is crucial for herbicidal activity, whereas additional fluorine or Cl atom at the 3-position of pyridine significantly enhances activity. Carboxylic ester derivatives exhibit superior herbicidal activity compared with amide derivatives. Moreover, the activity of carboxylic ester derivatives decreases with C chain extension, but the introduction of O atoms in the side chain benefits activity enhancement. Pot experiments conducted in a glasshouse demonstrated that I-01 and I-09 exhibited potent postemergence herbicidal activity against broadleaf weeds, and completely inhibited growth of Amaranthus retroflex, Abutilon theophrasti and Portulaca oleracea at a dosage of 75 g ha-1. CONCLUSION: Despite the initial goal of scaffold-hopping not being achieved, we have successfully identified a novel molecular scaffold exhibiting exceptional herbicidal activity, thereby presenting innovative prospects for herbicide development. © 2024 Society of Chemical Industry.


Assuntos
Herbicidas , Plantas Daninhas , Herbicidas/farmacologia , Herbicidas/síntese química , Herbicidas/química , Relação Estrutura-Atividade , Plantas Daninhas/efeitos dos fármacos , Propionatos/farmacologia , Propionatos/síntese química , Propionatos/química
4.
Pest Manag Sci ; 79(12): 5087-5095, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37559430

RESUMO

BACKGROUND: Previously, the herbicidal activity of N-benzyl-2-methoxybenzamides was discovered during a random screening program in our laboratory. The chemicals resulted in bleaching effect of newly grown leaves by interfering with the biosynthesis of ß-carotene in plant. RESULTS: A total of 28 benzamides were synthesized and subjected for the evaluation of herbicidal activity. Structure-activity relationship (SAR) showed that introducing propargyloxy group at 5-position of benzoyl-benzene ring and fluorine or methyl group at 3- or 4-position of benzyl-benzene ring is beneficial for the activity. Post-emergence herbicidal activities of compounds 406 and 412 were comparable to those of mesotrione and diflufenican. Studies on MOA showed that 406 decreased the level of both ß-carotene and plastoquinone (PQ) in treated plants. The bleaching effect in green alga caused by 406 could be reversed by supplying exogenous homogentisic acid (HGA), the precursor of plastoquinone. CONCLUSION: N-benzyl-2-methoxy-5-propargyloxybenzoamides were discovered as new candidates for bleaching herbicides. Preliminary investigation on mechanism of action (MOA) showed that the title compounds might indirectly interfere with carotenoid biosynthesis by blocking the production of PQ. © 2023 Society of Chemical Industry.


Assuntos
Herbicidas , Herbicidas/química , Plastoquinona , beta Caroteno , Benzeno , Plantas , Relação Estrutura-Atividade
5.
Environ Pollut ; 333: 122097, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352963

RESUMO

Comprehensive landscape patterns influence water quality with multiple factors, complex processes, and scale dependence. However, studies identifying landscape thresholds causing abrupt water quality changes and characterizing the contribution of topography to water quality are still limited. Exploring the impact mechanisms of natural geographical and landscape characteristics on spatial and seasonal water quality variations is conducive to watershed water resource protection and ecosystem restoration. Based on water quality monitoring data of Minjiahe River in the typical headwater area of the upstream Dan River in China from 2019 to 2021, we employed redundancy analysis, partial redundancy analysis, and nonparametric change-point analysis to analyze the relationship between stream water quality and multi-spatial scale comprehensive landscape patterns, to obtain the interactive and independent contributions of different landscape categories at multi-spatial scales on water quality, and to find the key landscape threshold leading to abrupt changes in water quality. Results showed that landscape configuration, landscape composition, and topographic factors collectively explain over 89.1% of water quality variation. Most seasonal variations in water quality were primarily caused by landscape configuration. The landscape composition was mainly responsible for the differences in water quality variations among spatial scales. The topographic factors made the least independent contribution and had a potential impact on overall water quality variation. In order to protect the water quality of streams, it is more reasonable to regulate the landscape at different scales. At the sub-catchment scale, interspersion and juxtaposition index (IJI) and landscape shape index (LSI) should be controlled below 82% and 22. At the 100 m riparian scale, farmland, urban land, IJI, and LSI should be controlled below 29%, 6.5%, 92%, and 26, respectively. Our results provide important guidance for optimizing landscape patterns and water conservation in the watershed.


Assuntos
Ecossistema , Qualidade da Água , Benchmarking , Rios , China , Monitoramento Ambiental/métodos
6.
Environ Sci Pollut Res Int ; 30(20): 57599-57616, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36971941

RESUMO

Exploring the impact of land use and slope on basin water quality can effectively contribute to the protection of the latter at the landscape level. This research concentrates on the Weihe River Basin (WRB). Water samples were collected from 40 sites within the WRB in April and October 2021. A quantitative analysis of the relationship between integrated landscape pattern (land use type, landscape configuration, slope) and basin water quality at the sub-basin, riparian zone, and river scales was conducted based on multiple linear regression analysis (MLR) and redundancy analysis (RDA). The correlation between water quality variables and land use was higher in the dry season than in the wet season. The riparian scale was the best spatial scale model to explain the relationship between land use and water quality. Agricultural and urban lands had a strong correlation with water quality, which was most affected by land use area and morphological indicators. In addition, the greater the area and aggregation of forest land and grassland, the better the water quality, while urban land presented larger areas with poorer water quality. The influence of steeper slopes on water quality was more remarkable than that of plains at the sub-basin scale, while the impact of flatter areas was greater at the riparian zone scale. The results indicated the importance of multiple time-space scales to reveal the complex relationship between land use and water quality. We suggest that watershed water quality management should focus on multi-scale landscape planning measures.


Assuntos
Rios , Qualidade da Água , Florestas , Análise de Regressão , Análise Multivariada , China , Monitoramento Ambiental/métodos
7.
Environ Sci Pollut Res Int ; 30(11): 31281-31293, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36445520

RESUMO

The flow structure in natural rivers may change due to the disturbance of vegetation, further affecting the transport of pollutants and sediment (Liu et al. 2020). In this paper, the random displacement model (RDM) is presented to study the material transport in the emergent vegetated flow by predicting the longitudinal dispersion coefficient (LDC), which plays an important role in the longitudinal transport of pollutants in natural rivers covered by emergent vegetation. RDM can be applied for the analysis of the vegetated flow provided that the velocity distribution and the turbulent diffusion coefficient distribution remain known. According to the experimental data on velocity and Reynolds stress, the flow field was divided into four sub-zones along the cross-sectional area where the transverse distribution of the longitudinal velocity and also transverse turbulent diffusion coefficient were determined. Moreover, the simulated results of the longitudinal dispersion coefficient were verified by using the previously measured data. In addition, the sensitivity analysis of RDM parameters was carried out. In comparison with the shear layer width and the velocity difference, the impact of vegetation zone width on the longitudinal dispersion coefficient was greater, but the model was fundamentally stable, further confirming that the analytical model can be reliable for predicting the longitudinal dispersion coefficient in the vegetated open-channel flow. Accurately estimating the longitudinal dispersion coefficient is useful for understanding the transport and fate of pollutants in river channels and, thereby, for exploring the sustainable development of the river ecological environment, as well as optimizing the planning and design of river course.


Assuntos
Meio Ambiente , Poluentes Ambientais , Rios
8.
Sci Total Environ ; 858(Pt 2): 159888, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334676

RESUMO

Soil detachment is the separation and dislodgment of soil particles from a soil mass by the force of raindrops and flow, which is also the initial process of soil erosion. Plant roots have significant effects on the soil detachment rate (SDR). Current studies have mainly focused on root effects on the SDR under single species. Because it is difficult to identify the roots of different species in mixed-plant areas, few studies have evaluated the root effects on the SDR under mixed-plants. Natural, undisturbed soil samples containing roots were collected from four natural sampling plots with single plant types, and six natural sampling plots with mixed plant types. Bare soil was used as the control. The samples were subjected to flow scouring through indoor hydraulic flume experiments under six shear stresses (3.65, 7.28, 7.67, 8.59, 10.15, and 12.19 Pa). The results showed that the root reduction effect on the SDR under the mode of tap roots mixed with fibrous roots was 55.54 % weaker than that the mode of fibrous roots mixed with other fibrous roots. When fibrous roots were mixed with tap roots, the fibrous roots indirectly affected the SDR through soil mechanical properties, while the indirect path of the tap roots on the SDR was not unique. However, the indirect effect of roots on the SDR was weaker than the direct effect. The mixed roots affected the SDR mainly by rill erodibility, not critical shear stress. The variation in rill erodibility at the mixed root sites was similar to the SDR variation at those sites. The mode of grasses with fibrous roots mixed with other grasses with fibrous roots was considered as better for soil and water vegetation conservation.


Assuntos
Raízes de Plantas , Solo , Plantas , Poaceae
9.
Environ Sci Pollut Res Int ; 30(3): 6506-6516, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35996051

RESUMO

Floating vegetation occurs in various environments, such as artificial floating islands, wetlands, river courses, and lakes, which constitute an important part of the river landscape and ecological restoration. The vertical distribution of the streamwise velocity of the channel flow with floating vegetation is of the utmost importance, and therefore, it is the basis for research on bed erosion and pollutant transport. Laboratory experiments on an open-channel flow covered by floating vegetation with unanchored roots have shown a two-layer structure of the velocity profile and a rapid decrease in the Reynolds stress across the interface in the vegetation layer but gradual in the non-vegetation layer. The flow was divided into four subzones in a vertical direction according to the organized flow structure in the experiment as follows: (I) the uniform region deep within the non-vegetation layer, (II) the outer region in the non-vegetation layer, (III) the inner region in the vegetation layer, and (IV) the uniform region deep within the vegetation layer. An analytical model based on the momentum balance in each subzone was developed to predict the profiles of velocity and Reynolds stress. The predictions from analytical models agree well with those from laboratory studies of floating vegetation and lay the theoretical foundation for future studies on water eutrophication and the transport of pollutants, sediments, and algae.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Plantas , Rios , Lagos
10.
J Environ Manage ; 324: 116288, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179476

RESUMO

The slope-gully system, the erosion unit on the Loess Plateau, suffers from severe soil erosion and loss of soil nutrients. Restoring vegetation can effectively reduce soil erosion, thereby reducing the loss of nitrogen and phosphorus. In the Loess Plateau, owing to the shortage of water resources and the adverse effects of over-revegetation, the restoration of vegetation in large areas is limited. To efficiently prevent the loss of soil nutrients and reduce non-point source pollution, vegetation patterns need to be reasonably restored. However, it is currently not clear as to how this can be achieved. Different slope-gully systems were established in this study, including pattern A (no vegetation), pattern B (up-slope vegetation), pattern C (middle-slope vegetation), and pattern D (down-slope vegetation). Then, the effects of vegetation patterns on soil total nitrogen (TN) and soil total phosphorus (TP) losses associated with runoff and sediment processes was quantitatively evaluated through the simulated rainfall. The results showed that (1) vegetation pattern markedly affected the yields of runoff, sediment, soil nitrogen, and soil phosphorus, resulting in the following order: pattern A > pattern B > pattern C > pattern D. (2) The correlation between TN and runoff was higher than that between TN and sediment; conversely, TP was more strongly correlated with sediment than with runoff. (3) Nitrogen loss with runoff was the main source of TN (58.76-90.74%), while phosphorus loss with sediment was the main source of TP (48.51-89.30%). Compared with other vegetation patterns, the down-slope can more effectively reduce the yields of runoff and sediment, thereby reducing the loss of TN and TP. Therefore, it was suggested that the lower part of the slope should be considered when revegetating.


Assuntos
Fósforo , Solo , Fósforo/análise , Nitrogênio/análise , Monitoramento Ambiental/métodos , China
11.
Sci Rep ; 11(1): 15595, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341421

RESUMO

The Loess Plateau in China has suffered severe soil erosion. To control soil erosion, extensive conservation measures aimed at redistributing rainfall, hindering flow velocity and intercepting sediment were implemented on the Loess Plateau. To accurately evaluate the combined effect of conservation measures in the Chabagou watershed, this study classified intra-event-based floods into four regimes via cluster and discriminant analyses. Regime A was characterized by short flood duration and low erosive energy, regime B was characterized by short flood duration and high erosive energy, regime C was characterized by long flood duration and low erosive energy, and regime D was characterized by long flood duration and high erosive energy. The results indicated that peak discharge (qp), runoff depth (H), mean discharge (qm), and runoff erosion power (E) decreased by 75.2%, 56.0%, 68.0% and 89.2%, respectively, in response to conservation measures. Moreover, area-specific sediment yield (SSY), average suspended sediment concentration (SCE), and maximum suspended sediment concentration (MSCE) decreased by 69.2%, 33.3% and 11.9%, respectively, due to conservation measures. The nonlinear regression analysis revealed a power function relationship between SSY and E in both the baseline (1961-1969) and measurement period (1971-1990) in all regimes. Conservation measures reduced sediment yield by not only reducing the runoff amount and soil erosion energy but also transforming the flood regime, for example, transforming a high-sediment-yield regime into a low-sediment-yield regime. Moreover, conservation measures altered the SSY-E relationship in regime A, whereas no obvious difference in regime B or C/D was observed between the measurement period and the baseline period. This study provides a better understanding of the mechanism of runoff regulation and the sediment yield reduction under comprehensive conservation measures in a small watershed on the Chinese Loess Plateau.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34418760

RESUMO

A Sin-QuEChERS, coupled to UHPLC Q-Exactive Orbitrap MS, was used for nontargeted high-throughput rapid screening and quantitative analysis of residual pesticides and metabolites in green teas. The sample was extracted with 0.1% formic acid in acetonitrile with shaking, salted out and centrifuged, and purified with Sin-QuEChERS Nano solid phase extraction column; with Full MS/ddMS2 as the data collection mode, the database containing 384 pesticides combined with Trace Finder 3.0 software, In the absence of standard products, rapid screening and confirmation of potential pesticide residues in tea samples with accurate mass, isotope abundance ratio, secondary fragment ions, etc. 20 pesticides were used as quality controls to verify the screening method, and the linearity of these pesticides was between 1 and 200 µg/L, and the correlation coefficients were all greater than 0.9922. Moreover, the LOQ was between 0.002 and 0.01 mg/kg. The average recoveries of spiked tea samples were 74%-111%. Efficiency and reliability of this method were investigated by the analysis of 38 Chinese green tea samples. 18 potential residual pesticides were detected by non-targeted screening. The researchers then conducted a quantitative analysis of the 18 potential residual pesticides.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Resíduos de Praguicidas , Chá/química , Ensaios de Triagem em Larga Escala , Limite de Detecção , Modelos Lineares , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/metabolismo , Reprodutibilidade dos Testes
13.
Artigo em Inglês | MEDLINE | ID: mdl-33803377

RESUMO

Under global climate change and pressure from human activities, soil erosion is becoming a major concern in the quest for regional sustainable development in the Kagera basin (KB). However, few studies in this region have comprehensively considered the impact of climate change and human influence on soil erosion, and the associated processes are unclear. Based on the premise of quantifying climate change, human influence, and soil erosion, this study undertook a neighborhood analysis as the theoretical support, for a grey relation analysis which was conducted to realize the qualitative assessment of the influence of climate change and human activities on soil erosion. The results show that 90.32% of the KB saw climate change as having a greater influence on soil erosion than human influence, with the remaining area 9.68% seeing human influence having a greater impact than climate change, mainly as a result of the effect of rangeland and farmland. The average soil erosion rate of the KB shows a very low level (10.54 t ha-1 yr-1), with rangeland and farmland being the main land use/land cover (LULC) types that see soil loss, followed by forest, wetland, and built-up areas. The climate change trends of the KB show the most dramatic changes in the northeast and southwest, gradually decreasing towards the line crossing from the Birunga National Park (Rwanda) to the Keza district (Tanzania). The human influence intensity (HII) shows a high level in the KB (21.93), where it is higher in the west and lower in the east of the basin.


Assuntos
Mudança Climática , Monitoramento Ambiental , Humanos , Ruanda , Solo , Erosão do Solo , Tanzânia
14.
Environ Sci Pollut Res Int ; 28(34): 47136-47148, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33884554

RESUMO

Non-point source pollution in rivers is an important factor affecting water quality. Quantifying the load of non-point source pollutants in the water and implementing improvement measures are critical for guaranteeing drinking water quality. In this study, the Dan River watershed, which is an important water source for Beijing, was investigated. Through a combination of water sampling and numerical simulations, the temporal and spatial distributions of nitrate nitrogen (NO3--N) and ammoniacal nitrogen (NH4+-N) loads in the watershed were determined, and the effects of vegetation restoration and agricultural management on reducing nitrogen pollution in the river were predicted. The NO3--N and NH4+-N loads in the watershed were higher during the wet season (July-September), accounting for more than 50% of the annual nitrogen output. The Soil and Water Assessment Tool (SWAT) was used to simulate the nitrogen load in the watershed. Pollution from nitrogen loading was serious in the lower reaches of the river; however, vegetation restoration can reduce the nitrogen output. Through scenario simulations, we found that an increase in forestland in the watershed would reduce the NO3--N and NH4+-N loads. The nitrate and NH4+-N loads in the watershed also decreased with reduced fertilizer use and reduced irrigation application in the watershed. Thus, reasonable land planning and agricultural management measures can effectively reduce nitrogen loss, which is an effective way to control non-point source pollution in watersheds and ensure river water quality.


Assuntos
Poluição Difusa , Poluentes Químicos da Água , China , Monitoramento Ambiental , Nitrogênio/análise , Poluição Difusa/análise , Rios , Poluentes Químicos da Água/análise
15.
Environ Sci Pollut Res Int ; 28(22): 28251-28262, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33532999

RESUMO

Land uses determine water quality within riparian environments to a certain extent and directly affect human health via drinking water. The main objective of this paper is to investigate the influences of land use, both in hydrologic response units (HRUs) and 200-m-wide buffer areas, on surface water quality. The variations and interrelationships between water physicochemical properties and land uses were assessed for better management of water environment. Nitrogen was the dominant nutrient and was significantly correlated with other water quality parameters. In the HRUs and buffer areas, the dominant landscape was grassland and farmland, respectively. Total organic carbon (TOC) and dissolved oxygen (DO) had negative correlation with land use factors; nitrate nitrogen, total nitrogen, total phosphorus, electrical conductivity, and temperature, in contrast, were positively correlated with them. Industrial and residential land was the critical land use for the aquatic environment in the Dan River, indicating that point pollution should receive more attention. Vegetation area had strong regression relationships with TOC and DO. Furthermore, more specific types of land use (subcategory classification) had a greater role in water quality. The land use in buffers can act on the water body more directly and effectively.


Assuntos
Rios , Qualidade da Água , China , Monitoramento Ambiental , Humanos , Nitrogênio/análise , Fósforo/análise
16.
J Endocrinol ; 246(1): 41-55, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32420901

RESUMO

Subclinical hyperthyroidism, a condition characterized by decreased thyroid-stimulating hormone (TSH) and normal concentration of thyroid hormone, is associated with an elevated risk for cognitive impairment. TSH is the major endogenous ligand of the TSH receptor (TSHR) and its role is dependent on signal transduction of TSHR. It has not, however, been established whether TSHR signaling is involved in the regulation of cognition. Here, we utilized Tshr knockout mice and found that Tshr deletion led to significantly compromised performance in learning and memory tests. Reduced dendritic spine density and excitatory synaptic density as well as altered synaptic structure in CA1 subfield of the hippocampus were also noted. Furthermore, the synapse-related gene expression was altered in the hippocampus of Tshr -/- mice. These findings suggest that TSHR signaling deficiency impairs spatial learning and memory, which discloses a novel role of TSHR signaling in brain function.


Assuntos
Memória/fisiologia , Receptores da Tireotropina/metabolismo , Aprendizagem Espacial/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Cognição/fisiologia , Hipocampo/metabolismo , Camundongos , Receptores da Tireotropina/genética
17.
Water Res ; 179: 115895, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450462

RESUMO

This study investigated the acute impact of heavy metals on activated sludge with respect to the amount properties of biopolymers and other solvable microbiological products (SMPs) released from the sludge. Ten heavy metals were selected for the evaluation. Under the experimental conditions, exposing activated sludge to different metals led to an increase in SMPs, with a more significant increase in nitrogenous organics than in carbonaceous ones, where Hg2+, Ag+, Cu2+, and Cr6+ led to the highest increase in SMP species, while Cd2+, Ni2+, Mn2+, Pb2+, and Co2+ caused limited increase in the middle and small SMP molecules, and Zn2+ and Cr3+ resulted in a decrease in SMP content. To probe the molecular impact of heavy metals and the association between cellular stress and SMP formation, the toxicity of heavy metals was evaluated using a toxicogenomics assay. Based on a correlation analysis between the increase in SMP and the molecular toxicity index-transcriptional effect level index (TELI) of different genes under corresponding stress conditions, eight genes demonstrated a strong correlation with SMP properties and were pre-assumed to have the most significant influence on the increment in SMPs. We further validated the correlation equation established to predict SMP production based on the molecular disturbance of the eight key biomarkers, using arsenic As3+ and vanadium V5+ as tests, and by quantifying the amount of SMPs released from the activated sludge under the influence of these metals using a TELI-derived equation. In addition, the heavy metals that generated greater amounts of reactive oxygen species also caused larger increases in SMPs.


Assuntos
Mercúrio , Metais Pesados , Esgotos , Águas Residuárias
18.
Environ Sci Pollut Res Int ; 27(11): 11637-11648, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970642

RESUMO

Vegetation plays an important role in the energy exchange, water cycle, carbon cycle, biogeochemical cycle, and maintenance of surface ecosystems. In recent years, regional vegetation cover has changed significantly. This study used statistical analyses, including the Mann-Kendall trend test, the Hurst exponent, and Pettitt test, to analyze the characteristics of temporal and spatial variation of vegetation coverage in the Xijiang River basin from 2000 to 2013. The results showed that vegetation coverage of 98.76% of the Xijiang River basin is weakly variable (Cv < 0.1). The area with significantly increased vegetation accounts for 43.45% of the total area (p < = 0.05). A total of 19.47% of vegetation coverage in the Xijiang River basin had significant change-points from 2004 to 2008 (p < = 0.05), and the area of concave change-points accounted for 25.99% of the total area of point increased the vegetation coverage. At an altitude of 500-2000 m, the altitude has an inhibitory effect on vegetation coverage. When the slope is less than 35 degrees, the slope has a promoting effect on vegetation coverage. Rich precipitation resources are the main source of soil water supply, and higher temperature provides better thermal energy resources, which may have a significant impact on vegetation growth in the future and cause time lag effects of climatic factors on vegetation coverage. The vegetation coverage and the area affected by the precipitation and temperature (time lag factors) accounted for 32.99% and 31.47% of the total watershed, respectively. The correlation between climatic factors, topographic factors, and vegetation coverage increased over time. The results from this study will help to further deepen the understanding of vegetation cover and its influencing factors, and provide a scientific basis for ecological restoration projects such as vegetation restoration in the Xijiang River basin of China.


Assuntos
Ecossistema , Rios , China , Mudança Climática , Monitoramento Ambiental
19.
Sci Total Environ ; 707: 135507, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31761370

RESUMO

Soil respiration is a large carbon flux from terrestrial ecosystems to the atmosphere, and small variations in soil respiration can prominently influence the global carbon (C) cycle. The vegetation changes could directly affect soil respiration. The large-scale "Grain for Green" project carried out on the Loess Plateau, China has importantly affected the contribution of soil respiration to atmospheric carbon dioxide (CO2). Therefore, it is important to study the effects of vegetation restoration on soil respiration. We selected four land-use types: crop, forest, shrub, and grassland in the Zhifanggou watershed to analyze variation in soil respiration during dry and rainy seasons. Furthermore, the source of CO2 emissions from soil respiration was identified using isotopes. The results showed that soil respiration in the rainy season was significantly higher than that in the dry season (P < .05). Soil respiration in the dry season was as follows: shrubland (1.04 µmol m-2 s-1) > cropland (0.72 µmol m-2 s-1) > forestland (0.44 µmol m-2 s-1) > grassland (0.33 µmol m-2 s-1). However, grass and forestland had significantly higher soil respiration than shrub and cropland in the rainy season (P < .05). Roots were the main source of soil respiration in cropland, which contributed >70% of CO2 emissions. Following revegetation, litter contributed more to soil respiration than roots or soil microorganisms at >68% of soil respiration. Our results provide a theoretical basis for assessing C balance in terrestrial ecosystems.


Assuntos
Ecossistema , Solo , Ciclo do Carbono , Dióxido de Carbono , China
20.
Huan Jing Ke Xue ; 40(7): 3030-3038, 2019 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854700

RESUMO

Studying the isotope characteristics and water body transformation relationships among different water bodies in the hilly and gully region of the Loess Plateau can provide a theoretical foundation for evaluating regional climate, ecology, and water resources. In this study, daily and monthly averaged δD and δ18O in precipitation, river water, and shallow groundwater were measured in 2017 in the Jiuyuangou watershed, which has a good ecological condition. The compositional relationship between the stable hydrogen and oxygen isotopes in difference water bodies was explored, the influence factors and spatio-temporal variation of δ18O in precipitation and river water were analyzed, and the stable isotope conversion ratios between different water bodies in the study area were calculated using the two-terminal mixed model. The main conclusions of the study are as follows:the d-excess of river water showed an increasing trend with elevation during the observation period; the δ18O of river water was enriched with increasing distance from the river source and decreased with increasing altitude; temperature, wind speed, and relative humidity had significant effects on the hydrogen and oxygen isotopes of precipitation; precipitation and shallow groundwater replenish the river during the non-flood period, the proportions of which were 46% and 54%, respectively; and during the flood season, the shallow groundwater is replenished by river water and precipitation, the proportions were 60% and 40%, respectively. These results indicate that there is a good conversion relationship between "precipitation-river-shallow groundwater" in the study area. The implementation of soil and water conservation measures has had some influence on the conversion of different water bodies in small watersheds. The results provide a basis for the establishment of water cycle models for hilly and gully regions of the Loess Plateau.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...