Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(18): 183801, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759196

RESUMO

Optical amplification and massive information transfer in modern physics depend on stimulated radiation. However, regardless of traditional macroscopic lasers or emerging micro- and nanolasers, the information modulations are generally outside the lasing cavities. On the other hand, bound states in the continuum (BICs) with inherently enormous Q factors are limited to zero-dimensional singularities in momentum space. Here, we propose the concept of spatial information lasing, whose lasing information entropy can be correspondingly controlled by near-field Bragg coupling of guided modes. This concept is verified in gain-loss metamaterials supporting full-k-space BICs with both flexible manipulations and strong confinement of light fields. The counterintuitive high-dimensional BICs exist in a continuous energy band, which provide a versatile platform to precisely control each lasing Fourier component and, thus, can directly convey rich spatial information on the compact size. Single-mode operation achieved in our scheme ensures consistent and stable lasing information. Our findings can be expanded to different wave systems and open new scenarios in informational coherent amplification and high-Q physical frameworks for both classical and quantum applications.

2.
Opt Lett ; 49(7): 1640-1643, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560825

RESUMO

The development of super-oscillatory lens (SOL) offers opportunities to realize far-field label-free super-resolution microscopy. Most microscopes based on a high numerical aperture (NA) SOL operate in the point-by-point scanning mode, resulting in a slow imaging speed. Here, we propose a high-NA metalens operating in the single-shot wide-field mode to achieve real-time super-resolution imaging. An optimization model based on the exhaustion algorithm and angular spectrum (AS) theory is developed for metalens design. We numerically demonstrate that the optimized metalens with an NA of 0.8 realizes the imaging resolution (imaging pixel size) about 0.85 times the Rayleigh criterion. The metalens can achieve super-resolution imaging of an object with over 200 pixels, which is one order of magnitude higher than the unoptimized metalens. Our method provides an avenue toward single-shot far-field label-free super-resolution imaging for applications such as real-time imaging of living cells and temporally moving particles.

3.
Nano Lett ; 23(11): 4923-4930, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37252845

RESUMO

Field-effect phototransistors feature gate voltage modulation, allowing dynamic performance control and significant signal amplification. A field-effect phototransistor can be designed to be inherently either unipolar or ambipolar in its response. However, conventionally, once a field-effect phototransistor has been fabricated, its polarity cannot be changed. Herein, a polarity-tunable field-effect phototransistor based on a graphene/ultrathin Al2O3/Si structure is demonstrated. Light can modulate the gating effect of the device and change the transfer characteristic curve from unipolar to ambipolar. This photoswitching in turn produces a significantly improved photocurrent signal. The introduction of an ultrathin Al2O3 interlayer also enables the phototransistor to achieve a responsivity in excess of 105 A/W, a 3 dB bandwidth of 100 kHz, a gain-bandwidth product of 9.14 × 1010 s-1, and a specific detectivity of 1.91 × 1013 Jones. This device architecture enables the gain-bandwidth trade-off in current field-effect phototransistors to be overcome, demonstrating the feasibility of simultaneous high-gain and fast-response photodetection.

4.
Adv Mater ; 35(30): e2208884, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37055931

RESUMO

Recent rapid progress in metasurfaces is underpinned by the physics of local and nonlocal resonances and the modes coupling among them, leading to tremendous applications such as optical switching, information transmission, and sensing. In this review paper, an overview of the recent advances in a broad range of dimensional optical field manipulation based on metasurfaces categorized into different classes based on design strategies is provided. This review starts from the near-field optical resonances of artificial nanostructures and discusses the far-field optical wave manipulation based on fundamental mechanisms such as mode generation and mode coupling. The recent advances in optical field manipulation based on metasurfaces in different optical dimensions such as phase and polarization are summarized, and newly-developed dimensions such as the orbital angular momentum and the coherence dimensions resulting from phase modulation are discussed. Then, the recent achievements of multiplexing and multifunctional metasurfaces empowered by multidimensional optical field manipulation for optical information transmission and integrated applications are reviewed. Finally, the paper concludes with a few perspectives on emerging trends, possible directions, and existing challenges in this fast-developing field.

5.
Light Sci Appl ; 11(1): 302, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253356

RESUMO

Polarization as an important degree of freedom for light plays a key role in optics. Structured beams with controlled polarization profiles have diverse applications, such as information encoding, display, medical and biological imaging, and manipulation of microparticles. However, conventional polarization optics can only realize two-dimensional polarization structures in a transverse plane. The emergent ultrathin optical devices consisting of planar nanostructures, so-called metasurfaces, have shown much promise for polarization manipulation. Here we propose and experimentally demonstrate color-selective three-dimensional (3D) polarization structures with a single metasurface. The geometric metasurfaces are designed based on color and phase multiplexing and polarization rotation, creating various 3D polarization knots. Remarkably, different 3D polarization knots in the same observation region can be achieved by controlling the incident wavelengths, providing unprecedented polarization control with color information in 3D space. Our research findings may be of interest to many practical applications such as vector beam generation, virtual reality, volumetric displays, security, and anti-counterfeiting.

6.
Opt Lett ; 47(18): 4814-4817, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107097

RESUMO

Optical chirality plays a key role in optical biosensing and spin-selective optical field manipulation. However, the maximum optical intrinsic chirality, which is represented by near-unity circular dichroism (CD), is yet to be achieved in a wide bandwidth range based on nanostructures. Here, we utilize dielectric bilayer polyatomic metasurfaces to realize the maximum optical intrinsic chirality over a wide bandwidth range. The CD efficiency of the two designed metasurfaces with opposite chirality is 99.9% at 1350 nm and over 98% from 1340 nm to 1361 nm. Our work provides a straightforward and powerful method for the realization of maximum optical intrinsic chirality, which has great potential in spin-selective optical wave manipulation.


Assuntos
Nanoestruturas , Dicroísmo Circular
7.
ACS Nano ; 16(8): 12777-12785, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35900823

RESUMO

Highly sensitive short-wave infrared (SWIR) detectors, compatible with the silicon-based complementary metal oxide semiconductor (CMOS) process, are regarded as the key enabling components in the miniaturized system for weak signal detection. To date, the high photogain devices are greatly limited by a large bias voltage, low-temperature refrigeration, narrow response band, and complex fabrication processes. Here, we demonstrate high photogain detectors working in the SWIR region at room temperature, which use graphene for charge transport and Te-hyperdoped silicon (Te-Si) for infrared absorption. The prolonged lifetime of carriers, combined with the built-in potential generated at the interface between the graphene and the Te-Si, leads to an ultrahigh photogain of 109 at room temperature (300 K) for 1.55 µm light. The gain can be improved to 1012, accompanied by a noise equivalent power (NEP) of 0.08 pW Hz-1/2 at 80 K. Moreover, the proposed device exhibits a NEP of 4.36 pW Hz-1/2 at 300 K at the wavelength of 2.7 µm, which is exceeding the working region of InGaAs detectors. This research shows that graphene can be used as an efficient platform for silicon-based SWIR detection and provides a strategy for the low-power, uncooled, high-gain infrared detectors compatible with the CMOS process.

8.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34835833

RESUMO

Single-crystal Cu not only has high electrical and thermal conductivity, but can also be used as a promising platform for the epitaxial growth of two-dimensional materials. Preparing large-area single-crystal Cu foils from polycrystalline foils has emerged as the most promising technique in terms of its simplicity and effectiveness. However, the studies on transforming polycrystalline foil into large-area single-crystal foil mainly focus on the influence of annealing temperature and strain energy on the recrystallization process of copper foil, while studies on the effect of annealing atmosphere on abnormal grain growth behavior are relatively rare. It is necessary to carry out more studies on the effect of annealing atmosphere on grain growth behavior to understand the recrystallization mechanism of metal. Here, we found that introduction of ethanol in pure argon annealing atmosphere will cause the abnormal grain growth of copper foil. Moreover, the number of abnormally grown grains can be controlled by the concentration of ethanol in the annealing atmosphere. Using this technology, the number of abnormally grown grains on the copper foil can be controlled to single one. This abnormally grown grain will grow rapidly to decimeter-size by consuming the surrounding small grains. This work provides a new perspective for the understanding of the recrystallization of metals, and a new method for the preparation of large-area single-crystal copper foils.

9.
Opt Express ; 29(20): 31488-31498, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615240

RESUMO

Perfect absorbers with high quality factors (Q-factors) are of great practical significance for optical filtering and sensing. Moreover, tunable multiwavelength absorbers provide a multitude of possibilities for realizing multispectral light intensity manipulation and optical switches. In this study, we demonstrate the use of vanadium dioxide (VO2)-assisted metasurfaces for tunable dual-band and high-quality-factor perfect absorption in the mid-infrared region. In addition, we discuss the potential applications of these metasurfaces in reflective intensity manipulation and optical switching. The Q-factors of the dual-band perfect absorption in the proposed metasurfaces are greater than 1000, which can be attributed to the low radiative loss induced by the guided-mode resonances and low intrinsic loss from the constituent materials. By utilizing the insulator-metal transition in VO2, we further proved that a continuous tuning of the reflectance with a large modulation depth (31.8 dB) can be realized in the designed metasurface accompanied by a dual-channel switching effect. The proposed VO2-assisted metasurfaces have potential applications in dynamic and multifunctional optical devices, such as tunable multiband filters, mid-infrared biochemical sensors, optical switches, and optical modulators.

10.
Opt Lett ; 46(15): 3528-3531, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329216

RESUMO

We propose an approach to realize a multi-band on-chip photonic spin Hall effect and selective excitation of whispering gallery modes (WGMs) by integrating metasurfaces with microcavities. Free-space circularly polarized light with opposite spin angular momentum can effectively excite WGMs with opposite propagation directions at fixed wavelengths. Moreover, the different WGMs with different propagation directions and polarizations can be selectively excited by manipulating the number of antennas. We demonstrate that the optical properties (i.e., coupling efficiency, peak positions, and peak widths) of the proposed metasurface-integrated microcavities can be easily tailored by adjusting different geometric parameters. This study enables the realization of chiral microcavities with exciting novel functionalities, which may provide a further step in the development of photonic integrated circuits, optical sensing, and chiral optics.

11.
Nanotechnology ; 32(10): 105603, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33227718

RESUMO

Batch production of continuous and uniform graphene films is critical for the application of graphene. Chemical vapor deposition (CVD) has shown great promise for mass producing high-quality graphene films. However, the critical factors affected the uniformity of graphene films during the batch production need to be further studied. Herein, we propose a method for batch production of uniform graphene films by controlling the gaseous carbon source to be uniformly distributed near the substrate surface. By designing the growth space of graphene into a rectangular channel structure, we adjusted the velocity of feedstock gas flow to be uniformly distributed in the channel, which is critical for uniform graphene growth. The monolayer graphene film grown inside the rectangular channel structure shows high uniformity with average sheet resistance of 345 Ω sq-1 without doping. The experimental and simulation results show that the placement of the substrates during batch growth of graphene films will greatly affect the distribution of gas-phase dynamics near the substrate surface and the growth process of graphene. Uniform graphene films with large-scale can be prepared in batches by adjusting the distribution of gas-phase dynamics.

12.
iScience ; 23(12): 101868, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33319185

RESUMO

Optical metasurface as a booming research field has put forward profound progress in optics and photonics. Compared with metallic-based components, which suffer from significant thermal loss and low efficiency, high-index all-dielectric nanostructures can readily combine electric and magnetic Mie resonances together, leading to efficient manipulation of optical properties such as amplitude, phase, polarization, chirality, and anisotropy. These advances have enabled tremendous developments in practical photonic devices that can confine and guide light at the nanoscale. Here we review the recent development of local electromagnetic resonances such as Mie-type scattering, bound states in the continuum, Fano resonances, and anapole resonances in dielectric metasurfaces and summarize the fundamental principles of dielectric resonances. We discuss the recent research frontiers in dielectric metasurfaces including wavefront-shaping, metalenses, multifunctional and computational approaches. We review the strategies and methods to realize the dynamic tuning of dielectric metasurfaces. Finally, we conclude with an outlook on the challenges and prospects of dielectric metasurfaces.

13.
Phys Rev Lett ; 125(9): 093904, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915597

RESUMO

Scatterings and transport in Weyl semimetals have caught growing attention in condensed matter physics, with observables including chiral zero modes and the associated magnetoresistance and chiral magnetic effects. Measurement of electrical conductance is usually performed in these studies, which, however, cannot resolve the momentum of electrons, preventing direct observation of the phase singularities in scattering matrix associated with Weyl point. Here we experimentally demonstrate a helical phase distribution in the angle (momentum) resolved scattering matrix of electromagnetic waves in a photonic Weyl metamaterial. It further leads to spiraling Fermi arcs in an air gap sandwiched between a Weyl metamaterial and a metal plate. Benefiting from the alignment-free feature of angular vortical reflection, our findings establish a new platform in manipulating optical angular momenta with photonic Weyl systems.

14.
Adv Mater ; 32(26): e1907983, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32430983

RESUMO

Realizing arbitrary manipulation of optical waves, which still remains a challenge, plays a key role in the implementation of optical devices with on-demand functionalities. However, it is hard to independently manipulate multiple dimensions of optical waves because the optical dimensions are basically associated with each other when adjusting the optical response of the devices. Here, the concise design principle of a chiral mirror is utilized to realize the full-dimensional independent manipulation of circular-polarized waves. By simply changing three structural variables of the chiral mirror, the proposed design principle can arbitrarily and independently empower the spin-selective manipulation of amplitude, phase, and operation wavelength of circular-polarized waves with a large modulation depth. This approach provides a simple solution for the realization of spin-selective full-dimensional manipulation of optical waves and shows ample application possibilities in the areas of optical encryption, imaging, and detection.

15.
Adv Mater ; 32(3): e1805912, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31617616

RESUMO

Metasurfaces are planar photonic elements composed of subwavelength nanostructures, which can deeply interact with light and exploit new degrees of freedom (DOF) to manipulate optical fields. In the past decade, metasurfaces have drawn great interest from the scientific community due to their profound potential to arbitrarily control light. Here, recent developments of multiplexing and multifunctional metasurfaces, which enable concurrent tasks through a dramatic compact design, are reviewed. The fundamental properties, design strategies, and applications of multiplexing and multifunctional metasurfaces are then discussed. First, recent progress on angular momentum multiplexing, including its behavior under different incident conditions, is considered. Second, a detailed overview of polarization-controlled, wavelength-selective, angle-selective, and reconfigurable multiplexing/multifunctional metasurfaces is provided. Then, the integrated and on-chip design of multifunctional metasurfaces is addressed. Finally, future directions and potential applications are presented.

16.
Opt Lett ; 44(15): 3805-3808, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368980

RESUMO

Spin-selective manipulation of optical waves is widely utilized in various optical techniques and plays a key role in modern nanophotonics. While numerous efficient approaches have been applied in metasurfaces to realize spin-selective manipulation of optical waves, the implementation of giant spin-selective asymmetric transmission remains a challenge. Here, we propose an all-dielectric metasurface to realize giant tri-band spin-selective asymmetric transmission in the near infrared regime. The proposed giant spin-selective asymmetric transmission is attributed to the excitation of overlapping multipolar resonances in the dielectric elliptic cylinders, which can be well manipulated by changing the structure parameters. This research demonstrates the great potential of all-dielectric metasurfaces for spin-selective transmission manipulation, which provide helpful insights and intriguing possibilities for applications in information optics, quantum optics, optical sensing, and imaging.

17.
Adv Mater ; 31(32): e1901729, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31197902

RESUMO

Compact integrated multifunctional metasurface that can deal with concurrent tasks represent one of the most profound research fields in modern optics. Such integration is expected to have a striking impact on minimized optical systems in applications such as optical communication and computation. However, arbitrary multifunctional spin-selective design with precise energy configuration in each channel is still a challenge, and suffers from intrinsic noise and complex designs. Here, a design principle is proposed to realize energy tailorable multifunctional metasurfaces, in which the functionalities can be arbitrarily designed if the channels have no or weak interference in k-space. A design strategy is demostrated here with high-efficiency dielectric nanopillars that can modulate full Fourier components of the optical field. The spin-selective behavior of the dielectric metasurfaces is also investigated, which originates from the group effect introduced by numerous nanopillar arrays. This approach provides straightforward rules to control the functionality channels in the integrated metasurfaces, and paves the way for efficient concurrent optical communication.

18.
Adv Mater ; 31(29): e1903039, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31155773

RESUMO

A macroscopic film (2.5 cm × 2.5 cm) made by layer-by-layer assembly of 100 single-layer polycrystalline graphene films is reported. The graphene layers are transferred and stacked one by one using a wet process that leads to layer defects and interstitial contamination. Heat-treatment of the sample up to 2800 °C results in the removal of interstitial contaminants and the healing of graphene layer defects. The resulting stacked graphene sample is a freestanding film with near-perfect in-plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials. Macroscale tensile tests yields maximum values of 62 GPa for the Young's modulus and 0.70 GPa for the fracture strength, significantly higher than has been reported for any other macroscale carbon films; microscale tensile tests yield maximum values of 290 GPa for the Young's modulus and 5.8 GPa for the fracture strength. The measured in-plane thermal conductivity is exceptionally high, 2292 ± 159 W m-1 K-1 while in-plane electrical conductivity is 2.2 × 105 S m-1 . The high performance of these films is attributed to the combination of the high in-plane crystalline order and unique stacking configuration through the thickness.

19.
Adv Mater ; 31(16): e1802458, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30767285

RESUMO

Metasurfaces, 2D artificial arrays of subwavelength elements, have attracted great interest from the optical scientific community in recent years because they provide versatile possibilities for the manipulation of optical waves and promise an effective way for miniaturization and integration of optical devices. In the past decade, the main efforts were focused on the realization of single-dimensional (amplitude, frequency, polarization, or phase) manipulation of optical waves. Compared to the metasurfaces with single-dimensional manipulation, metasurfaces with multidimensional manipulation of optical waves show significant advantages in many practical application areas, such as optical holograms, sub-diffraction imaging, and the design of integrated multifunctional optical devices. Nowadays, with the rapid development of nanofabrication techniques, the research of metasurfaces has been inevitably developed from single-dimensional manipulation toward multidimensional manipulation of optical waves, which greatly boosts the application of metasurfaces and further paves the way for arbitrary design of optical devices. Herein, the recent advances in metasurfaces are briefly reviewed and classified from the viewpoint of different dimensional manipulations of optical waves. Single-dimensional manipulation and 2D manipulation of optical waves with metasurfaces are discussed systematically. In conclusion, an outlook and perspectives on the challenges and future prospects in these rapidly growing research areas are provided.

20.
Nano Lett ; 19(7): 4221-4228, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30742772

RESUMO

Colors with high saturation are of prime significance for display and imaging devices. So far, structural colors arising from all-dielectric metasurfaces, particularly amorphous silicon and titanium oxide, have exceeded the gamut of standard RGB (sRGB) space. However, the excitation of higher-order modes for dielectric materials hinders the further increase of saturation. Here, to address the challenge, we propose a new design strategy of multipolar-modulated metasurfaces with multi-dielectric stacked layers to realize the deep modulation of multipolar modes. Index matching between layers can suppress the multipolar modes at nonresonant wavelength, resulting in the dramatic enhancement in the monochromaticity of reflection spectra. Ultrahigh-saturation colors ranging from 70% to 90% with full hue have been theoretically and experimentally obtained. The huge gamut space can be realized in an unprecedented way, taking up 171% sRGB space, 127% Adobe RGB space, and 57% CIE space. More interestingly, the coverage for Recommendation 2020 (Rec. 2020) space, which almost has not been successfully realized so far, can reach 90%. We anticipate that the proposed multipolar-modulated metasurfaces are promising for the enlargement of the color range for high-end and advanced display applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...