Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Biotechnol Prog ; : e3454, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539261

RESUMO

Precipitation during the viral inactivation, neutralization and depth filtration step of a monoclonal antibody (mAb) purification process can provide quantifiable and potentially significant impurity reduction. However, robust commercial implementation of this unit operation is limited due to the lack of a representative scale-down model to characterize the removal of impurities. The objective of this work is to compare isoelectric impurity precipitation behavior for a monoclonal antibody product across scales, from benchtop to pilot manufacturing. Scaling parameters such as agitation and vessel geometry were investigated, with the precipitate amount and particle size distribution (PSD) characterized via turbidity and flow imaging microscopy. Qualitative analysis of the data shows that maintaining a consistent energy dissipation rate (EDR) could be used for approximate scaling of vessel geometry and agitator speeds in the absence of more detailed simulation. For a more rigorous approach, however, agitation was simulated via computational fluid dynamics (CFD) and these results were applied alongside a population balance model to simulate the trajectory of the size distribution of precipitate. CFD results were analyzed within a framework of a two-compartment mixing model comprising regions of high- and low-energy agitation, with material exchange between the two. Rate terms accounting for particle formation, growth and breakage within each region were defined, accounting for dependence on turbulence. This bifurcated model was successful in capturing the variability in particle sizes over time across scales. Such an approach enhances the mechanistic understanding of impurity precipitation and provides additional tools for model-assisted prediction for process scaling.

2.
Chemistry ; 29(36): e202300776, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37073779

RESUMO

The incorporation of the privileged amino functionality is of paramount importance in organic synthesis. In contrast to the well-developed amination methods for alkenes, the dearomative amination of arenes is largely underexplored due to the inherently inert reactivity of arene π-bonds and selectivity challenges. Herein, we report an intermolecular dearomative aminofunctionalization via direct nucleophilic addition of simple amines to chromium-bound arenes. This multicomponent 1,2-amination/carbonylation reaction enables rapid access to complicated alicyclic compounds containing amino and amide functionalities from benzene derivatives under CO-gas-free conditions, which also represents the first application of nitrogen-based nucleophiles in η6 -coordination-induced arene dearomatizations.

3.
Biotechnol Prog ; 38(5): e3268, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35536540

RESUMO

Charge variants represent a critical quality attribute that must be controlled during the development and manufacturing of monoclonal antibodies (mAb). Previously, we reported the development of a cost-effective enzymatic treatment capable of removing the C-terminal lysine from a mAb produced by a Chinese hamster ovary (CHO) GS cell line. This treatment resulted in a significant decrease in basic charge variants and a corresponding improvement in the main peak, enabling a longer cell culture production duration for titer improvement. Here, we describe this enzymatic treatment protocol in detail and demonstrate its applicability to two additional mAbs produced by distinct industrial cell lines. The simple addition of carboxypeptidase B (CpB) at a ratio of 1:10,000 (w/w) to whole cell cultures significantly improved the main peaks for both mAbs without affecting other critical quality attributes, including size exclusion chromatography impurities and N-glycans. Our results demonstrate that this in vitro CpB treatment protocol can be used as a platform strategy to improve main peak for mAbs that exhibit high levels of basic variants attributable to C-terminal lysines. An in vitro enzymatic treatment in general may be another good addition to existing in vivo CHO cell culture strategies for titer improvement and control of critical quality attributes.


Assuntos
Anticorpos Monoclonais , Lisina , Animais , Anticorpos Monoclonais/química , Células CHO , Carboxipeptidase B , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Lisina/metabolismo , Polissacarídeos
4.
Bioengineering (Basel) ; 9(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35447688

RESUMO

Fed-batch process intensification with a significantly shorter culture duration or higher titer for monoclonal antibody (mAb) production by Chinese hamster ovary (CHO) cells can be achieved by implementing perfusion operation at the N-1 stage for biomanufacturing. N-1 perfusion seed with much higher final viable cell density (VCD) than a conventional N-1 batch seed can be used to significantly increase the inoculation VCD for the subsequent fed-batch production (referred as N stage), which results in a shorter cell growth phase, higher peak VCD, or higher titer. In this report, we incorporated a process analytical technology (PAT) tool into our N-1 perfusion platform, using an in-line capacitance probe to automatically adjust the perfusion rate based on real-time VCD measurements. The capacitance measurements correlated linearly with the offline VCD at all cell densities tested (i.e., up to 130 × 106 cells/mL). Online control of the perfusion rate via the cell-specific perfusion rate (CSPR) decreased media usage by approximately 25% when compared with a platform volume-specific perfusion rate approach and did not lead to any detrimental effects on cell growth. This PAT tool was applied to six mAbs, and a platform CSPR of 0.04 nL/cell/day was selected, which enabled rapid growth and maintenance of high viabilities for four of six cell lines. In addition, small-scale capacitance data were used in the scaling-up of N-1 perfusion processes in the pilot plant and in the GMP manufacturing suite. Implementing a platform approach based on capacitance measurements to control perfusion rates led to efficient process development of perfusion N-1 for supporting high-density CHO cell cultures for the fed-batch process intensification.

5.
Bioengineering (Basel) ; 9(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447733

RESUMO

Improving productivity to reduce the cost of biologics manufacturing and ensure that therapeutics can reach more patients remains a major challenge faced by the biopharmaceutical industry. Chinese hamster ovary (CHO) cell lines are commonly prepared for biomanufacturing by single cell cloning post-transfection and recovery, followed by lead clone screening, generation of a research cell bank (RCB), cell culture process development, and manufacturing of a master cell bank (MCB) to be used in early phase clinical manufacturing. In this study, it was found that an additional round of cloning and clone selection from an established monoclonal RCB or MCB (i.e., re-cloning) significantly improved titer for multiple late phase monoclonal antibody upstream processes. Quality attributes remained comparable between the processes using the parental clones and the re-clones. For two CHO cells expressing different antibodies, the re-clone performance was successfully scaled up at 500-L or at 2000-L bioreactor scales, demonstrating for the first time that the re-clone is suitable for late phase and commercial manufacturing processes for improvement of titer while maintaining comparable product quality to the early phase process.

6.
Appl Microbiol Biotechnol ; 106(3): 1057-1066, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35072737

RESUMO

Therapeutic monoclonal antibodies (mAbs), primarily immunoglobin G1 (IgG1) and IgG4 with an engineered CPPC motif in its hinge region, are predominant biologics. Inter-chain disulfide bonds of IgG mAbs are crucial to maintaining IgG integrity. Inter-chain disulfide bond-reduced low molecular weight (LMW) is considered as one of quality attributes of IgG drug substance and is observed in drug substance manufacturing. In this study, we demonstrate that IgG1 and IgG4 are susceptible to the reducing agent TCEP differently and they follow different pathways to form LMWs. Our study shows that IgG1 is more sensitive to TCEP than IgG4. Both therapeutic IgG1 and human blood plasma IgG1 follow a heavy-heavy-light chain (HHL) pathway, featured with HHL and HH as intermediate species. Human blood plasma IgG4 with a CPSC motif in its hinge region follows heavy-light chain (HL) pathway, featured with HL as the intermediate species. However, therapeutic IgG4 follows a hybrid pathway with the HL pathway as the primary and the HHL pathway as the secondary. These experimental observations are further explained using solvent accessibility of inter-chain disulfide bonds obtained from computational modeling and molecular dynamics simulations. Findings from this study provide mechanistic insights of LMW formation of IgG1 and IgG4, which suggest selection of IgG1 or IgG4 for bispecific antibodies and cysteine-based antibody-drug conjugates. KEY POINTS: • Experimentally discovered preferable disulfide bond reduction pathways between IgG1 and IgG4 antibodies, driven by the different solvent accessibilities of these disulfide bonds. • Computationally explained the solvent accessibility aided by molecular dynamics simulations. • Provided insights in developing robust biologics process and designing bispecific antibodies and cysteine-based antibody-drug conjugates.


Assuntos
Anticorpos Biespecíficos , Dissulfetos , Anticorpos Monoclonais , Cisteína , Humanos , Imunoglobulina G
7.
Biotechnol Prog ; 38(2): e3231, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994527

RESUMO

Virus removal filtration is a critical step in the manufacture of monoclonal antibody products, providing a robust size-based removal of both enveloped and non-enveloped viruses. Many monoclonal antibodies show very large reductions in filtrate flux during virus filtration, with the mechanisms governing this behavior and its dependence on the properties of the virus filter and antibody remaining largely unknown. Experiments were performed using the highly asymmetric Viresolve® Pro and the relatively homogeneous Pegasus™ SV4 virus filters using a highly purified monoclonal antibody. The filtrate flux for a 4 g/L antibody solution through the Viresolve® Pro decreased by about 10-fold when the filter was oriented with the skin side down but by more than 1000-fold when the asymmetric filter orientation was reversed and used with the skin side up. The very large flux decline observed with the skin side up could be eliminated by placing a large pore size prefilter directly on top of the virus filter; this improvement in filtrate flux was not seen when the prefilter was used inline or as a batch prefiltration step. The increase in flux due to the prefilter was not related to the removal of large protein aggregates or to an alteration in the extent of concentration polarization. Instead, the prefilter appears to transiently disrupt reversible associations of the antibodies caused by strong intermolecular attractions. These results provide important insights into the role of membrane morphology and antibody properties on the filtrate flux during virus filtration.


Assuntos
Anticorpos Monoclonais , Vírus , Anticorpos Monoclonais/química , Filtração/métodos , Membranas Artificiais , Vírus/química
8.
J Chromatogr A ; 1664: 462788, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998025

RESUMO

Flow-through ion-exchange chromatography is frequently used in polishing biotherapeutics, but the factors that contribute to impurity persistence are incompletely understood. A large number of dilute impurities may be encountered that exhibit physicochemical diversity, making the flow-through separation performance highly sensitive to process conditions. The analysis presented in this work develops two novel correlations that offer transferable insights into the chromatographic behavior of weakly adsorbing impurities. The first, based on column simulations and validated experimentally, delineates the relative contributions of thermodynamic, transport, and geometric properties in dictating the initial breakthrough volumes of dilute species. The Graetz number for mass transfer was found to generalize the transport contributions, enabling estimation of a threshold in the equilibrium constant below which impurity persistence is expected. Impurity adsorption equilibria are needed to use this correlation, but such data are not typically available. The second relationship presented in this work may be used to reduce the experimental burden of estimating adsorption equilibria as a function of ionic strength. A correlation between stoichiometric displacement model parameters was found by consolidating isocratic retention data for over 200 protein-pH-resin combinations from the extant literature. Coupled with Yamamoto's analysis of linear gradient elution data, this correlation may be used to estimate retentivity approximately from a single experimental measurement, which could prove useful in predicting host-cell protein chromatographic behavior.


Assuntos
Proteínas , Adsorção , Cromatografia por Troca Iônica , Concentração Osmolar , Termodinâmica
9.
Biotechnol J ; 17(2): e2100320, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34874097

RESUMO

BACKGROUND: Virus inactivation is a critical operation in therapeutic protein manufacturing. Low pH buffers are a widely used strategy to ensure robust enveloped virus clearance. However, the choice of model virus can give varying results in viral clearance studies. Pseudorabies virus (SuHV) or herpes simplex virus-1 (HSV-1) are frequently chosen as model viruses to demonstrate the inactivation for the herpes family. RESULTS: In this study, SuHV, HSV-1, and equine arteritis virus (EAV) were used to compare the inactivation susceptibility at pH 4.0 and 4°C. SuHV and HSV-1 are from the same family, and EAV was chosen as a small, enveloped virus. Glycine, acetate, and citrate buffers at pH 4.0 and varying buffer strengths were studied. The inactivation susceptibility was found to be in the order of SuHV > HSV > EAV. The buffer effectiveness was found to be in the order of citrate > acetate > glycine. The smaller virus, EAV, remained stable and infectious in all the buffer types and compositions studied. CONCLUSION: The variation in inactivation susceptibility of herpes viruses indicated that SuHV and HSV cannot be interchangeably used as a virus model for inactivation studies. Smaller viruses might remain adventitiously infective at moderately low pH.


Assuntos
Herpesvirus Humano 1 , Vírus , Animais , Cavalos , Concentração de Íons de Hidrogênio , Inativação de Vírus
10.
Data Brief ; 39: 107491, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712760

RESUMO

In this article, we present four sets of data from high-throughput screening (HTS) studies of different chemically defined media using an industrially relevant Chinese hamster ovary (CHO) cell line. While complex hydrolysate media was used in the early phase process development and manufacturing of a monoclonal antibody (mAb), here we seek to determine an appropriate chemically defined media for late phase process development. Over 150 combinations of chemically defined basal media, feed media, and basal and feed media supplements, such as polyphenolic flavonoid antioxidants (including rosmarinic acid (RA)), were evaluated in four HTS studies to replace the complex hydrolysate media. Specifically, these four screening studies incorporated custom design of experiment (DOE), one-factor-at-a-time (OFAT), and definitive screening design methodologies for titer improvement. Titer was improved two fold compared to the early phase process using the addition of RA to chemically defined media. This dataset exemplifies how HTS can be used as an effective approach to systematically and statistically determine media composition and supplementation to increase mAb titer. These data were presented in connection with a published paper [1].

11.
Biotechnol J ; 16(12): e2100176, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34506679

RESUMO

Viral surrogates to screen for virus inactivation (VI) can be a faster, cheaper and safer alternative to third-party testing of pathogenic BSL2 (Biosafety level 2) model viruses. Although the bacteriophage surrogate, Ø6, has been used to assess low pH BSL2 VI, it has not been used for evaluation of detergent-mediated VI. Furthermore, Ø6 is typically assayed through host cell infectivity which introduces the risk of cross-contaminating other cell lines in the facility. To circumvent contamination, we developed an in-house RT-qPCR (Reverse transcriptase quantitative polymerase chain reaction) assay for selective detection of active Ø6 from a population of live and dead phage. The RT-qPCR assay was used to evaluate Ø6 inactivation in cell culture fluid of monoclonal antibody and fusion protein. Complementary Ø6 infectivity was also conducted at a third-party testing facility. The Ø6 RT-qPCR and infectivity data was modeled against VI of three BSL2 viruses, X- MuLV, A- MuLV and HSV-1 in corresponding therapeutics. Both Ø6 methods demonstrate that any VI agent showing Ø6 clearance of a minimum of 2.5 logs would demonstrate complete BSL2 VI of ≥ 4.0 logs. Compared to BSL2 virus testing, this in-house Ø6 RT-qPCR tool can screen VI agents at 5% the cost and a turnaround time of 2 to 3 days vs. 4 to 7 months.


Assuntos
Inativação de Vírus , Vírus , Vírus da Leucemia Murina , Reação em Cadeia da Polimerase em Tempo Real
12.
J Biotechnol ; 338: 1-4, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197822

RESUMO

This paper describes a simplified affinity precipitation process for the purification of mAbs from complex mixtures using elastin-like polypeptide fused to a single Z domain of protein A (ELP-Z). This approach eliminates several steps in the original process by directly extracting the mAb from the affinity precipitate, without the need for resolubilization. The efficacy of this elution without resolubilization (EWR) approach for obtaining pure mAb is demonstrated and the effects of mixing are examined. This simplification of the affinity precipitation process may facilitate the implementation of ELP-Z based mAb bioprocessing, particularly in a continuous scenario.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Elastina , Peptídeos , Proteína Estafilocócica A
13.
Biotechnol Prog ; 37(4): e3177, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34036755

RESUMO

Analytical testing of product quality attributes and process parameters during the biologics development (Process analytics) has been challenging due to the rapid growth of biomolecules with complex modalities to support unmet therapeutic needs. Thus, the expansion of the process analytics tool box for rapid analytics with the deployment of cutting-edge technologies and cyber-physical systems is a necessity. We introduce the term, Process Analytics 4.0; which entails not only technology aspects such as process analytical technology (PAT), assay automation, and high-throughput analytics, but also cyber-physical systems that enable data management, visualization, augmented reality, and internet of things (IoT) infrastructure for real time analytics in process development environment. This review is exclusively focused on dissecting high-level features of PAT, automation, and data management with some insights into the business aspects of implementing during process analytical testing in biologics process development. Significant technological and business advantages can be gained with the implementation of digitalization, automation, and real time testing. A systematic development and employment of PAT in process development workflows enable real time analytics for better process understanding, agility, and sustainability. Robotics and liquid handling workstations allow rapid assay and sample preparation automation to facilitate high-throughput testing of attributes and molecular properties which are otherwise challenging to monitor with PAT tools due to technological and business constraints. Cyber-physical systems for data management, visualization, and repository must be established as part of Process Analytics 4.0 framework. Furthermore, we review some of the challenges in implementing these technologies based on our expertise in process analytics for biopharmaceutical drug substance development.


Assuntos
Produtos Biológicos , Automação , Produtos Biológicos/uso terapêutico , Fluxo de Trabalho
14.
Biotechnol J ; 16(7): e2000342, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33877739

RESUMO

BACKGROUND: Therapeutic protein manufacturing would benefit by having an arsenal of ways to inactivate viruses. There have been many publications on the virus inactivation ability of arginine at pH 4.0, but the mechanism of this inactivation is unknown. This study explored how virus structure and solution conditions enhance virus inactivation by arginine and leads to a better understanding of the mechanism of virus inactivation by arginine. RESULTS: Large diameter viruses from the Herpesviridae family (SuHV-1, HSV-1) with loosely packed lipids were highly inactivated by arginine, whereas small diameter, enveloped viruses (equine arteritis virus (EAV) and bovine viral diarrhea virus (BVDV)) with tightly packed lipids were negligibly inactivated by arginine. To increase the inactivation of viruses resistant to arginine, arginine-derivatives and arginine peptides were tested. Derivates and peptides demonstrated that a greater capacity for clustering and added hydrophobicity enhanced virus inactivation. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) detected increases in virus size after arginine exposure, supporting the mechanism of lipid expansion. CONCLUSIONS: Arginine most likely interacts with the lipid membrane to cause inactivation. This is shown by larger viruses being more sensitive to inactivation and expansion of the viral size. The enhancement of arginine inactivation when increased hydrophobic molecules are present or arginine is clustered demonstrates a potential mechanism of how arginine interacts with the lipid membrane.


Assuntos
Vírus da Diarreia Viral Bovina , Vírus , Animais , Arginina , Cavalos , Inativação de Vírus
15.
Biotechnol Bioeng ; 118(8): 2829-2844, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33844277

RESUMO

Antibody disulfide bond reduction has been a challenging issue in monoclonal antibody manufacturing. It could lead to a decrease of product purity and failure to meet the targeted product profile and/or specifications. More importantly, disulfide bond reduction could also impact drug safety and efficacy. Scientists across the industry have been examining the root causes and developing mitigation strategies to address the challenge. In recent years, with the development of high titer mammalian cell culture processes to meet the rapidly growing demand for antibody biopharmaceuticals, disulfide bond reduction has been observed more frequently. Thus, it is necessary to continue evolving the disulfide reduction mitigation strategies and developing novel approaches to maintain high product quality. Additionally, in recent years as more complex molecules (such as bispecific and trispecific antibodies) emerge, the molecular heterogeneity due to incomplete formation of the interchain disulfide bonds becomes a more imperative challenging issue. Given the disulfide reduction challenges that biotech industry is facing, in this review, we provide a comprehensive scientific summary of the root cause analysis of disulfide reduction during process development of antibody therapeutics, mitigation strategies and its potential remediated recovery based on published papers. First, this paper intends to highlight different aspects of the root cause for disulfide reduction. Secondly, to provide a broader understanding of the disulfide bond reduction in downstream process, this paper discusses disulfide bond reduction impact on product stability, associated analytical methods for disulfide bond reduction detection and characterization, process control strategies as well as their manufacturing implementation. In addition, brief perspectives on the development of future mitigation strategies are also reviewed, including platform alignment, mitigation strategy application for the emerging new modalities such as bispecific and trispecific antibodies as well as using machine learning to identify molecule susceptibility of disulfide bond reduction. The data in this review are originated from the published papers.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Dissulfetos/química , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Humanos , Oxirredução
16.
J Pharm Sci ; 110(7): 2651-2660, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812889

RESUMO

Size Exclusion Chromatography (SEC) has been widely used to assess aggregate content in bio-pharmaceutical drugs such as monoclonal antibodies (mAbs), and is routinely used during method development and release testing. Electrostatic interactions between protein analytes and SEC column resin are commonly observed besides the primary mode of size separation during SEC method development, which needs to be minimized. An effective method to minimize electrostatic interactions is through increasing mobile phase (MP) salt concentration. However; increasing salt concentration in MP will induce increased hydrophobicity of proteins and increased hydrophobic interactions between protein and stationary phase, as demonstrated for mAb-A in this paper, a protein with high surface aggregation propensity (SAP) score and an isoelectric point near mobile phase pH. In this work, a systematic, Design of Experimental approach was taken to identify optimal SEC method conditions including column type, buffer composition, ionic strength, pH and additives. The optimized method was demonstrated to be robust towards small changes in method operation conditions and was qualified for use in product release and stability studies. Additionally, biophysical and computational studies were performed to elucidate the role of MP additives, which supports the use of arginine as an essential additive to minimize undesirable hydrophobic interactions between proteins and stationary phase.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Cromatografia em Gel , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar
17.
J Chromatogr A ; 1643: 462008, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33780880

RESUMO

Charge variants of biological products, such as monoclonal antibodies (mAbs), often play an important role in stability and biological activity. Characterization of these charge variants is challenging, however, primarily due to the lack of both efficient and effective isolation methods. In this work, we present a novel use of an established, high productivity continuous chromatography method, known as multi-column counter-current solvent gradient purification (MCSGP), to create an enriched product that can be better utilized for analytical characterization. We demonstrate the principle of this separation method and compare it to traditional batch HPLC (high performance liquid chromatography) or FPLC (fast protein liquid chromatography) methods, using the isolation of charge variants of different mAbs as a case study. In a majority of cases, we are able to show that the MCSGP method is able to provide enhanced purity and quantity of samples when compared to traditional fractionation methods, using the same separation conditions. In one such case, a sample prepared by MCSGP methodology achieved 95% purity in 10 hours of processing time, while those prepared by FPLC and HPLC achieved purities of 78% and 87% in 48 and 300 hours of processing time, respectively. We further evaluate charge variant enrichment strategies using both salt and pH gradients on cation exchange chromatography (CEX) and anion exchange chromatography (AEX) resins, to provide more effective separation and less sample processing following enrichment. As a result, we find that we are able to utilize different gradients to change the enrichment capabilities of certain charged species. Lastly, we summarize the identified mAb charge variants used in this work, and highlight benefits to analytical characterization of charge variants enriched with the continuous chromatography method. The method adds a new option for charge variant enrichment and facilitates analytical characterization of charge variants.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Animais , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Fracionamento Químico , Cricetulus , Eletroforese Capilar , Glicosilação , Espectrometria de Massas , Peso Molecular , Mapeamento de Peptídeos , Solventes/química
18.
Biotechnol Bioeng ; 118(9): 3334-3347, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33624836

RESUMO

The goal of cell culture process intensification is to improve productivity while maintaining acceptable quality attributes. In this report, four processes, namely a conventional manufacturing Process A, and processes intensified by enriched N-1 seed (Process B), by perfusion N-1 seed (Process C), and by perfusion production (Process D) were developed for the production of a monoclonal antibody. The three intensified processes substantially improved productivity, however, the product either failed to meet the specification for charge variant species (main peak) for Process D or the production process required early harvest to meet the specification for charge variant species, Day 10 or Day 6 for Processes B and C, respectively. The lower main peak for the intensified processes was due to higher basic species resulting from higher C-terminal lysine. To resolve this product quality issue, we developed an enzyme treatment method by introducing carboxypeptidase B (CpB) to clip the C-terminal lysine, leading to significantly increased main peak and an acceptable and more homogenous product quality for all the intensified processes. Additionally, Processes B and C with CpB treatment extended bioreactor durations to Day 14 increasing titer by 38% and 108%, respectively. This simple yet effective enzyme treatment strategy could be applicable to other processes that have similar product quality issues.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Carboxipeptidase B/farmacologia , Animais , Células CHO , Cricetulus
19.
Anal Bioanal Chem ; 413(8): 2113-2123, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33543314

RESUMO

Isomerization of aspartic acid (Asp) in therapeutic proteins could lead to safety and efficacy concerns. Thus, accurate quantitation of various Asp isomerization along with kinetic understanding of the variant formations is needed to ensure optimal process development and sufficient product quality control. In this study, we first observed Asp-succinimide conversion in complementarity-determining regions (CDRs) Asp-Gly motif of a recombinant mAb through ion exchange chromatography, intact protein analysis by mass spectrometry, and LC-MS/MS. Then, we developed a specific peptide mapping method, with optimized sample digestion conditions, to accurately quantitate Asp-succinimide-isoAsp variants at peptide level without method-induced isomerization. Various kinetics of Asp-succinimide-isoAsp isomerization pathways were elucidated using 18O labeling followed by LC-MS analysis. Molecular modeling and molecular dynamic simulation provide additional insight on the kinetics of Asp-succinimide formation and stability of succinimide intermediate. Findings of this work shed light on the molecular construct and the kinetics of the formation of isoAsp and succinimide in peptides and proteins, which facilitates analytical method development, protein engineering, and late phase development for commercialization of therapeutic proteins.


Assuntos
Anticorpos Monoclonais/química , Ácido Aspártico/análise , Mapeamento de Peptídeos/métodos , Peptídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Isomerismo , Cinética , Succinimidas/análise , Espectrometria de Massas em Tandem/métodos
20.
Biotechnol Bioeng ; 118(9): 3604-3609, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33421115

RESUMO

Multi-column capture chromatography (MCC) has gained increased attention lately due to the significant economic and process-related advantages it offers compared to traditional batch mode chromatography. However, for wide adoption of this technology in the clinical and commercial space, it requires scalable models for viral validation. In this study, additional viral validation studies were conducted under cGLP guidelines to assess retro-(X-MuLV) and parvo-virus (minute virus of mice) clearance across twin-column continuous capture chromatography (CaptureSMB) to supplement work previously performed. A surrogate model was validated using standard batch mode chromatography equipment based on flow path modifications to mimic the loading strategy employed in CaptureSMB. In addition, aged resin was used in this surrogate format to assess the impact of resin lifetime on viral clearance during continuous capture operation. The impact of column loading was also explored to shed light on the viral clearance mechanisms of protein A chromatography in overloading conditions. The proposed approach greatly simplifies MCC virus validation studies, and provides a robust strategy for regulatory filing of continuous biomanufacturing processes.


Assuntos
Anticorpos Monoclonais , Vírus da Leucemia Murina/química , Vírus Miúdo do Camundongo/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Cromatografia , Cricetulus , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...