Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res X ; 25: 100251, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39297053

RESUMO

Freshwater biodiversity is increasingly threatened by dams and many other anthropogenic stressors, yet our understanding of the complex responses of different biotas and their multiple facets remains limited. Here, we present a multi-faceted and integrated-indices approach to assess the differential responses of freshwater biodiversity to multiple stressors in the Yangtze River, the third longest and most dam-densely river in the world. By combining individual biodiversity indices of phytoplankton, zooplankton, periphyton, macroinvertebrates, and fish with a novel integrated aquatic biodiversity index (IABI), we disentangled the effects of hydrology, water quality, land use, and natural factors on both α and ß diversity facets in taxonomic, functional, and phylogenetic dimensions. Our results revealed that phytoplankton and fish species and functional richness increased longitudinally, while fish taxonomic and phylogenetic ß diversity increased but phytoplankton and macroinvertebrate ß diversity remained unchanged. Hydrology and water quality emerged as the key drivers of all individual biodiversity indices, followed by land use and natural factors, with fish and phytoplankton showed the strongest responses. Importantly, we found that natural, land use, and hydrological factors indirectly affected biodiversity by altering water quality, which in turn directly influenced taxonomic and phylogenetic IABIs. Our findings highlight the complex interplay of multiple stressors in shaping freshwater biodiversity and underscore the importance of considering both individual and integrated indices for effective conservation and management. We propose that our multi-faceted and integrated-indices approach can be applied to other large, dam-modified river basins globally.

2.
Dalton Trans ; 53(34): 14182-14192, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39135481

RESUMO

Aqueous zinc-ion batteries (ZIBs) have attracted enormous attention for future energy-storage devices owing to their high theoretical capacity and environmental friendliness. However, obtaining cathodes with a high specific capacity and fast reaction kinetics remains a huge challenge. Herein, Cu-VOx material with a thin sheet microsphere structure composed of nanoparticles was prepared by a simple hydrothermal reaction, which improved reaction kinetics and specific capacity. Pre-embedding Cu2+ into V2O5 to introduce abundant oxygen vacancies extended the interlayer distance to 1.16 nm, weakened the effect of the V-O bonds, and improved the electrical conductivity and structural stability. At the same time, the influence of different valence metal ions (M = K+, Cu2+, Fe3+, Sn4+, Nb5+, and W6+) pre-embedded in V2O5 was studied. Benefiting from a large interlayer spacing, high electrical conductivity, and excellent structural stability, the Cu-VOx electrode demonstrated a high specific capacity of 455.9 mA h g-1 at 0.1 A g-1. Importantly, when the current density was increased to 6 A g-1, the Cu-VOx electrode still achieved a high specific capacity of 178.8 mA h g-1 and maintained a high capacity retention of 76.5% over 2000 cycles.

3.
ACS Nano ; 18(28): 18693-18700, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38958405

RESUMO

Facing the challenge of information security in the current era of information technology, optical encryption based on metasurfaces presents a promising solution to this issue. However, most metasurface-based encryption techniques rely on limited decoding keys and struggle to achieve multidimensional complex encryption. It hinders the progress of optical storage capacity and puts encryption security at a disclosing risk. Here, we propose and experimentally demonstrate a multidimensional encryption system based on chip-integrated metasurfaces that successfully incorporates the simultaneous manipulation of three-dimensional optical parameters, including wavelength, direction, and polarization. Hence, up to eight-channel augmented reality (AR) holograms are concealed by near- and far-field fused encryption, which can only be extracted by correctly providing the three-dimensional decoding keys and then vividly exhibit to the authorizer with low crosstalk, high definition, and no zero-order speckle noise. We envision that the miniature chip-integrated metasurface strategy for multidimensional encryption functionalities promises a feasible route toward the encryption capacity and information security enhancement of the anticounterfeiting performance and optically cryptographic storage.

4.
Small ; : e2402749, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031112

RESUMO

Transition metal dichalcogenide TiSe2 exhibits a superconducting dome within a low pressure range of 2-4 GPa, which peaks with the maximal transition temperature Tc of ≈1.8 K. Here it is reported that applying high pressure induces a new superconducting state in TiSe2, which starts at ≈16 GPa with a substantially higher Tc that reaches 5.6 K at ≈21.5 GPa with no sign of decline. Combining high-throughput first-principles structure search, X-ray diffraction, and Raman spectroscopy measurements up to 30 GPa, It is found that TiSe2 undergoes a first-order structural transition from the 1T phase under ambient pressure to a new 4O phase under high pressure. Comparative ab initio calculations reveal that while the conventional phonon-mediated pairing mechanism may account for the superconductivity observed in 1T-TiSe2 under low pressure, the electron-phonon coupling of 4O-TiSe2 is too weak to induce a superconducting state whose transition temperature is as high as 5.6 K under high pressure. The new superconducting state found in pressurized TiSe2 requires further study on its underlying mechanism.

5.
Adv Mater ; 36(31): e2403865, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857624

RESUMO

High-entropy alloy (HEA) nanostructures arranged into well-defined configurations hold great potential for accelerating the development of electronics, photonics, catalysis, and device integration. However, the random nucleation induced by the disparity in physicochemical properties of multiple elements makes it challenging to achieve single-particle synthesis at the patterned preset sites in the high-entropy scenario. Herein, the liquid metal nanoreactor strategy is proposed to realize the construction of HEA arrays. The coalescence of the liquid metal driven by the tendency to decrease surface energy provides a restricted environment for the nucleation and growth to form single HEA particles at the preset locations, which can be regarded as a self-confinement reaction. Liquid metal endowing a low diffusion energy barrier on the substrate and a high diffusivity of the alloy system can dynamically promote the aggregation process. As a result, the HEA array is prepared with elements up to eleven and possesses uniform periodicity, which exhibits excellent holography response in a broad spectrum. This work injects new vitality into the construction of HEA nanopatterns and provides an excellent platform for propelling their fundamental research and applications.

6.
Nano Lett ; 24(20): 6002-6009, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739273

RESUMO

Two-dimensional van der Waals heterostructures (2D-vdWHs) based on transition metal dichalcogenides (TMDs) provide unparalleled control over electronic properties. However, the interlayer coupling is challenged by the interfacial misalignment and defects, which hinders a comprehensive understanding of the intertwined electronic orders, especially superconductivity and charge density wave (CDW). Here, by using pressure to regulate the interlayer coupling of non-centrosymmetric 6R-TaS2 vdWHs, we observe an unprecedented phase diagram in TMDs. This phase diagram encompasses successive suppression of the original CDW states from alternating H-layer and T-layer configurations, the emergence and disappearance of a new CDW-like state, and a double superconducting dome induced by different interlayer coupling effects. These results not only illuminate the crucial role of interlayer coupling in shaping the complex phase diagram of TMD systems but also pave a new avenue for the creation of a novel family of bulk heterostructures with customized 2D properties.

7.
Nanoscale ; 16(8): 4289-4298, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349138

RESUMO

Optical information concealment/encryption technologies are of great importance to structural color applications. Although a series of responsive materials have been developed for dynamic structural color, the shortcomings of the high-quality synthesis process, the complex controlling method, and the low-resolution capability limit their practical use. Herein, we proposed a novel strategy of humidity-driven structural-color-based imaging concealment/encryption by utilizing metal-hydrogel-metal (MHM) nanocavities with configurable swellablity response to humidity change. With varied exposure doses, multi-stage MHM nanocavities with swellable hydrogel interlayers are achieved, generating dynamic structural color covering the visible spectrum. We revealed that the swelling ratio of hydrogel microstructures can be gradually adjusted between 1.05 and 2.08 by varying the exposure dose. We demonstrated that a hydrogel-based structural color image can be concealed with humidity changes by configurating swellable and non-swellable hydrogel pixels together. Furthermore, we developed the double exposure method in which the first exposure can generate pixel arrays for the deceptive image and the second exposure can locally suppress the swellablity of certain pixels. This method can highlight hidden images in a moist state, demonstrating a powerful strategy for high-density optical information encryption.

8.
Nano Lett ; 24(6): 2063-2070, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299886

RESUMO

On-chip integrated meta-optics promise to achieve high-performance and compact integrated photonic devices. To arbitrarily engineer the optical trajectory along the propagation path in an on-chip integrated scheme is of significance in fundamental physics and various emerging applications. Here, we experimentally demonstrate an on-chip metasurface integrated on a waveguide to enable predefined arbitrary optical trajectories in the visible regime. By transformation of the transverse phase to generate longitudinal mapping, the guided waves are extracted and molded into any different optical trajectories (parabola, hyperbola, and cosine). More intriguingly, predefined polarization states with longitudinal variation are also successfully imparted along the trajectory. Owing to the on-chip propagation scheme, the trajectories are uniquely free from zero-order diffraction interference, naturally having a higher signal-to-noise ratio beyond conventional free-space forms. Overall, such on-chip optical trajectory engineering allows for miniaturized integration and can find paths in potential applications of complex optical manipulation, advanced laser fabrication, and microscopic imaging.

9.
J Environ Manage ; 353: 120143, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301477

RESUMO

The application of nitrification inhibitors (nitrapyrin) and urease inhibitors (N-(N-butyl) thiophosphoric triamide) under conventional water resources has been considered as an effective means to improve nitrogen utilization efficiency and mitigate soil greenhouse gas emissions. However, it is not known whether the inhibitors still have an inhibitory effect under unconventional water resources (reclaimed water and livestock wastewater) irrigation and whether their use in combination with biochar improves the mitigation effect. Therefore, unconventional water resources were used for irrigation, with groundwater (GW) control. Nitrapyrin and N-(N-butyl) thiophosphoric triamide were used alone or in combination with biochar in a pot experiment, and CO2, N2O, and CH4 emissions were measured. The results showed that irrigation of unconventional water resources exacerbated global warming potential (GWP). All exogenous substance treatments increased CO2 and CH4 emissions and suppressed N2O emissions, independent of the type of water, compared to no substances (NS). The inhibitors were ineffective in reducing the GWP whether or not in combination with biochar, and the combined application of inhibitors with biochar further increased the GWP. This study suggests that using inhibitors and biochar in combination to regulate the greenhouse effect under unconventional water resources irrigation should be done with caution.


Assuntos
Agricultura , Carvão Vegetal , Gado , Compostos Organofosforados , Animais , Agricultura/métodos , Águas Residuárias , Aquecimento Global , Dióxido de Carbono/análise , Óxido Nitroso/análise , Solo , Fertilizantes , Metano
10.
Huan Jing Ke Xue ; 45(1): 555-566, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216504

RESUMO

Agricultural utilization of reclaimed water is considered to be an effective way to solve water shortage and reduce water environmental pollution. Silicon fertilizer can improve crop yield and quality and enhance crop resistance. The effect of foliar spray with silicon fertilizer on phyllosphere microbial communities remains lacking. In this study, a pot experiment was conducted to explore the effects of different types of silicon fertilizer on the composition and diversity of a phyllosphere bacterial community and the abundances of related functional genes in rice irrigated with reclaimed water. The results showed that Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, and Verrucomicrobiota dominated the phyllosphere bacteria of rice. The relative abundance of Bacillus was higher than that of other treatments in RIS3. Reclaimed water irrigation significantly increased the relative abundances of the potential pathogens Pantoea and Enterobacter. The unclassified bacteria were also an important part of the bacterial community in the rice phyllosphere. Bacillus, Exiguobacterium, Aeromonas, and Citrobacter were significantly enriched by silicon fertilizer treatments. Functional prediction analysis showed that indicator species were mainly involved in metabolism and degradation functions, and the predicted functional groups of phyllosphere bacteria were attributed to chemoheterotrophy, aerobic chemoheterotrophy, nitrate reduction, and fermentation. Quantitative PCR results showed that AOA, AOB, and nifH genes were at low abundance levels in all treatments, and nirK genes was not significantly different among treatments. These results contribute to the in-depth understanding of the effects of foliar spray silicon fertilizer on the bacterial community structure and diversity of rice phyllosphere and provide a theoretical basis for the application of silicon fertilizer in reclaimed water irrigation agriculture.


Assuntos
Bacillus , Oryza , Fertilizantes/análise , Silício/farmacologia , Solo/química , Água/análise , Bactérias/genética , Microbiologia do Solo
11.
Nat Commun ; 15(1): 845, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287059

RESUMO

Directional emission of photoluminescence despite its incoherence is an attractive technique for light-emitting fields and nanophotonics. Optical metasurfaces provide a promising route for wavefront engineering at the subwavelength scale, enabling the feasibility of unidirectional emission. However, current directional emission strategies are mostly based on static metasurfaces, and it remains a challenge to achieve unidirectional emissions tuning with high performance. Here, we demonstrate quantum dots-hydrogel integrated gratings for actively switchable unidirectional emission with simultaneously a narrow divergence angle less than 1.5° and a large diffraction angle greater than 45°. We further demonstrate that the grating efficiency alteration leads to a more than 7-fold tuning of emission intensity at diffraction order due to the variation of hydrogel morphology subject to change in ambient humidity. Our proposed switchable emission strategy can promote technologies of active light-emitting devices for radiation control and optical imaging.

12.
Adv Mater ; 36(11): e2310294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088224

RESUMO

The advent of intelligent display devices has given rise to diverse and complex demands for miniature light-emitting devices. Light-emitting metasurfaces have emerged as a practical and efficient means of achieving precise light modulation. However, their practicality is limited by certain constraints. First, there is a need for further exploration of the ability to manipulate both pumping and emitting light simultaneously. Second, there is currently no encoding freedom in multi-dimensional emitting light. To address these concerns, using meta-atoms is proposed to encode both fluorescence and pumping light independently, and expand the encoding freedom with different incident wavevector directions. A light-emitting metasurface with quad-fold multiplex encoding meta-displays, including dual scattering images and dual fluorescence images, is further demonstrated. This design strategy not only manipulates both pumping and fluorescence light but also broadens encoding freedom for comprehensive multi-functionality. This can pave the way for multiplexing optical displays, information storage, and next-generation wearable displays.

13.
Front Microbiol ; 14: 1295456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075928

RESUMO

Introduction: Parasitic ciliates are protozoans with a global distribution. Along with the gut microbiota, they have formed a micro-ecosystem that affects the host's nutrition, metabolism, and immunity. The interactions and relationships among the three components of this microecosystem (protozoa, gut microbiota, and host) remain only partially understood. Xenocypris fish and the unique ciliate Balantidium polyvacuolum in its hindgut are good materials to study the interplay. Methods: In this study, 16S rRNA gene amplicon sequencing and short-chain fatty acids (SCFAs) identification were used. Network was also constructed to understand their relationships. Results: We found that the gut microbiota of B. polyvacuolum-infected X. davidi and X. argentea had higher diversity, richness, and evenness than uninfected ones. B. polyvacuolum could lead to an increase of Fusobacterium and Chloroflexi in both X. davidi and X. argentea, while significantly increase the abundance of genera Romboutsia and Clostridium in X. argentea. Besides, B. polyvacuolum could significantly increase the content of total SCFAs and acetic acid in X. davidi and increase the concentrations of propionic, isobutyric and butanoic acids in X. argentea. Furthermore, correlation analyses showed that B. polyvacuolum may alter SCFAs by affecting key SCFAs-producing bacteria such as Clostridium and Cetobacterium. Discussion: This study greatly expands our understanding of relationships among B. polyvacuolum, gut microbiota and host Xenocypris fish, which sheds new insights into the mechanism of interaction among protozoa, gut microbiota and host.

14.
Ecotoxicol Environ Saf ; 266: 115549, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813077

RESUMO

The effects of root exudates and irrigation with treated wastewater on heavy metal mobility and soil bacterial composition under intercropping remain poorly understood. We conducted a pot experiment with maize and soybean grown in monocultures or intercultures, irrigated with either groundwater or treated wastewater. In addition, the pre-collected root exudates from hydroponic culture with mono- or inter-cropped maize and soybean were applied to the soil at four levels (0 %, 16 %, 32 % and 64 %). The results showed that application of root exudates increased plant growth and soil nutrient content. The analysis of "Technique for Order of Preference by Similarity to Ideal Solution" for higher plant biomass and lower soil Cd and Pb concentrations indicated that the best performance of soybean under treated wastewater irrigation was recorded under intercropping applied with 64 % of exudates, with a performance score of 0.926 and 0.953 for Cd and Pb, respectively. The second-best performance of maize under treated wastewater irrigation was also observed under intercropping applied with 64 % of exudates. Root exudate application reduced heavy metals migration in the soil-plant system, with a greater impact in intercropping than in monocropping. In addition, certain soil microorganisms were also increased with root exudate application, regardless of irrigation water. This study suggests that appropriate application of root exudates could potentially improve plant growth and soil health, and reduce toxic heavy metal concentrations in soils and plants irrigated with treated wastewater.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Glycine max , Águas Residuárias , Zea mays , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Poluentes do Solo/análise
15.
J Am Chem Soc ; 145(43): 23842-23848, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37859342

RESUMO

Organic-inorganic halide perovskites possess unique electronic configurations and high structural tunability, rendering them promising for photovoltaic and optoelectronic applications. Despite significant progress in optimizing the structural characteristics of the organic cations and inorganic framework, the role of organic-inorganic interactions in determining the structural and optical properties has long been underappreciated and remains unclear. Here, by employing pressure tuning, we realize continuous regulation of organic-inorganic interactions in a lead halide perovskite, MHyPbBr3 (MHy+ = methylhydrazinium, CH3NH2NH2+). Compression enhances the organic-inorganic interactions by strengthening the Pb-N coordinate bonding and N-H···Br hydrogen bonding, which results in a higher structural distortion in the inorganic framework. Consequently, the second-harmonic-generation (SHG) intensity experiences an 18-fold increase at 1.5 GPa, and the order-disorder phase transition temperature of MHyPbBr3 increases from 408 K under ambient pressure to 454 K at the industrially achievable level of 0.5 GPa. Further compression triggers a sudden non-centrosymmetric to centrosymmetric phase transition, accompanied by an anomalous bandgap increase by 0.44 eV, which stands as the largest boost in all known halide perovskites. Our findings shed light on the intricate correlations among organic-inorganic interactions, octahedral distortion, and SHG properties and, more broadly, provide valuable insights into structural design and property optimization through cation engineering of halide perovskites.

16.
BMC Genomics ; 24(1): 624, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858069

RESUMO

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.


Assuntos
Balantidium , Cipriniformes , Animais , Carboidratos , Metabolismo Energético , Amido
17.
Opt Express ; 31(16): 26565-26576, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710514

RESUMO

In this work, we have proposed to implement a zero-index material (ZIM) to control the in-plane emission of planar random optical modes while maintaining the intrinsic disordered features. Light propagating through a medium with near-zero effective refractive index accumulates little phase change and is guided to the direction determined by the conservation law of momentum. By enclosing a disordered structure with a ZIM based on all-dielectric photonic crystal (PhC), broadband emission directionality improvement can be obtained. We find the maximum output directionality enhancement factor reaches 30, around 6-fold increase compared to that of the random mode without ZIM. The minimum divergence angle is ∼6° for single random optical mode and can be further reduced to ∼3.5° for incoherent multimode superposition in the far field. Despite the significant directionality enhancement, the random properties are well preserved, and the Q factors are even slightly improved. The method is robust and can be effectively applied to the disordered medium with different structural parameters, e.g., the filling fraction of scatterers, and different disordered structure designs with extended or strongly localized modes. The output direction of random optical modes can also be altered by further tailoring the boundary of ZIM. This work provides a novel and universal method to manipulate the in-plane emission direction as well as the directionality of disordered medium like random lasers, which might enable its on-chip integration with other functional devices.

18.
ACS Omega ; 8(28): 24912-24921, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483186

RESUMO

The utilization of high-efficiency adsorption materials to reduce cadmium pollution in aquatic environments is the focus of current environmental remediation research. Straw waste and sludge, which are available in huge amounts, can be best utilized in the preparation of environmental remediation materials. In this study, six types of biochar (SBC, CBC, DBC, SD1BC, SRDBC, and SCDBC) were prepared from straw and sludge by co-pyrolysis, and their cadmium adsorption mechanisms were explored. Cd(II) adsorption isotherms and kinetics on the biochar were determined and fitted to different models. Kinetic modeling was used to characterize the Cd(II) adsorption of biochar, and findings revealed the process of sorption followed pseudo-second-order kinetics (R2 > 0.96). The Langmuir model accurately represented the isotherms of adsorption, indicating that the process was monolayer and controlled by chemical adsorption. SCDBC had the highest capacity for Cd(II) adsorption (72.2 mg g-1), 1.5 times greater than that of sludge biochar, and 3 times greater than that of corn straw biochar. As the pH level rose within the range of pH 5.0 to 7.0 and the ionic strength decreased, the adsorption capacity experienced an increase. SCDBC contained CaCO3 mineral crystals before Cd(II) adsorption, and CdCO3 was found in SCDBC after adsorbing Cd(II) via X-ray diffraction analysis; the peak of Cd could be observed by Fourier transform infrared spectroscopy after the adsorption of Cd(II). The possible adsorption of Cd(II) by SCDBC occurred primarily via surface complexation with active sorption sites, precipitation with inorganic anions, and coordination with π electrons. Collectively, the study suggested that the six types of biochar, particularly SCDBC, could be used as highly efficient adsorbents for Cd(II) removal from aquatic environments.

19.
Plants (Basel) ; 12(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375911

RESUMO

The scarcity of freshwater resources has increased the use of nonconventional water resources such as brackish water, reclaimed water, etc., especially in water-scarce areas. Whether an irrigation cycle using reclaimed water and brackish water (RBCI) poses a risk of secondary soil salinization to crop yields needs to be studied. Aiming to find an appropriate use for different nonconventional water resources, pot experiments were conducted to study the effects of RBCI on soil microenvironments, growth, physiological characteristics and antioxidation properties of crops. The results showed the following: (1) compared to FBCI, the soil moisture content was slightly higher, without a significant difference, while the soil EC, sodium and chloride ions contents increased significantly under the RBCI treatment. With an increase in the reclaimed water irrigation frequency (Tri), the contents of EC, Na+ and Cl- in the soil decreased gradually, and the difference was significant; the soil moisture content also decreased gradually. (2) There were different effects of the RBCI regime on the soil's enzyme activities. With an increase in the Tri, the soil urease activity indicated a significant upward trend as a whole. (3) RBCI can alleviate the risk of soil salinization to some extent. The soil pH values were all below 8.5, and were without a risk of secondary soil alkalization. The ESP did not exceed 15 percent, and there was no possible risk of soil alkalization except that the ESP in soil irrigated by brackish water irrigation went beyond the limit of 15 percent. (4) Compared with FBCI, no obvious changes appeared to the aboveground and underground biomasses under the RBCI treatment. The RBCI treatment was conducive to increasing the aboveground biomass compared with pure brackish water irrigation. Therefore, short-term RBCI helps to reduce the risk of soil salinization without significantly affecting crop yield, and the irrigation cycle using reclaimed-reclaimed-brackish water at 3 g·L-1 was recommended, according to the experimental results.

20.
ACS Omega ; 8(20): 17983-17991, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251179

RESUMO

Despite the significant number of studies that have recently focused on plant invasion and invasive plants' success, many uncertainties still exist on the effects of invasive plant identity and diversity on the native plant response under different levels of diversity. A mixed planting experiment was conducted using the native Lactuca indica (L. indica) and four invasive plants. The treatments consisted of 1, 2, 3, and 4 levels of invasive plants richness in different combinations in competition with the native L. indica. Here, the results showed that native plant response depends on the invasive plant identity and invasive plant diversity, which increases the native plant total biomass under 2-3 levels of invasive plant richness and decreases under high invasive plant density. This plant diversity effect was more significant in the native plant relative interaction index, which shows negative values except under a single invasion with Solidago canadensis and Pilosa bidens. The native plant leaf nitrogen level increased under four levels of invasive plant richness, which means more affected by invasive plant identity than invasive plant diversity. Finally, this study demonstrated that native plant response under invasion depends on the identity and diversity of invasive plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA