Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1301433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38778912

RESUMO

Aging population has led to an increased prevalence of chronic and degenerative pathologies. A manifestation of unhealthy aging is frailty, a geriatric syndrome that implies a non-specific state of greater vulnerability. Currently, methods for frailty diagnosis are based exclusively on clinical observation. The aim of this study is to determine whether the bioenergetic capacity defined as mitochondrial oxygen consumption rate (OCR) of peripheral circulation mononuclear cells (PBMC) associates with the frailty phenotype in older adults and with their nutritional status. This is a cross-sectional analytic study of 58 participants 70 years and older, 18 frail and 40 non-frail adults, from the ALEXANDROS cohort study, previously described. Participants were characterized through sociodemographic and anthropometric assessments. Frail individuals displayed a higher frequency of osteoporosis and depression. The mean age of the participants was 80.2 ± 5.2 years, similar in both groups of men and women. Regarding the nutritional status defined as the body mass index, most non-frail individuals were normal or overweight, while frail participants were mostly overweight or obese. We observed that OCR was significantly decreased in frail men (p < 0.01). Age was also associated with significant differences in oxygen consumption in frail patients, with lower oxygen consumption being observed in those over 80 years of age. Therefore, the use of PBMC can result in an accessible fingerprint that may identify initial stages of frailty in a minimally invasive way.

2.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108527

RESUMO

Epidemiological studies show that having a history of cancer protects from the development of Alzheimer's Disease (AD), and vice versa, AD protects from cancer. The mechanism of this mutual protection is unknown. We have reported that the peripheral blood mononuclear cells (PBMC) of amnestic cognitive impairment (aMCI) and Alzheimer's Disease (AD) patients have increased susceptibility to oxidative cell death compared to control subjects, and from the opposite standpoint a cancer history is associated with increased resistance to oxidative stress cell death in PBMCs, even in those subjects who have cancer history and aMCI (Ca + aMCI). Cellular senescence is a regulator of susceptibility to cell death and has been related to the pathophysiology of AD and cancer. Recently, we showed that cellular senescence markers can be tracked in PBMCs of aMCI patients, so we here investigated whether these senescence markers are dependent on having a history of cancer. Senescence-associated ßeta-galactosidase (SA-ß-Gal) activity, G0-G1 phase cell-cycle arrest, p16 and p53 were analyzed by flow cytometry; phosphorylated H2A histone family member X (γH2AX) by immunofluorescence; IL-6 and IL-8 mRNA by qPCR; and plasmatic levels by ELISA. Senescence markers that were elevated in PBMCs of aMCI patients, such as SA-ß-Gal, Go-G1 arrested cells, IL-6 and IL-8 mRNA expression, and IL-8 plasmatic levels, were decreased in PBMCs of Ca + aMCI patients to levels similar to those of controls or of cancer survivors without cognitive impairment, suggesting that cancer in the past leaves a fingerprint that can be peripherally traceable in PBMC samples. These results support the hypothesis that the senescence process might be involved in the inverse association between cancer and AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neoplasias , Humanos , Leucócitos Mononucleares , Doença de Alzheimer/genética , Interleucina-6 , Interleucina-8 , Testes Neuropsicológicos , Disfunção Cognitiva/genética , Cognição , RNA Mensageiro
3.
Front Cell Dev Biol ; 10: 946678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060801

RESUMO

The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.

4.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012652

RESUMO

Recent studies suggest that cellular senescence plays a role in Alzheimer's Disease (AD) pathogenesis. We hypothesize that cellular senescence markers might be tracked in the peripheral tissues of AD patients. Senescence hallmarks, including altered metabolism, cell-cycle arrest, DNA damage response (DDR) and senescence secretory associated phenotype (SASP), were measured in peripheral blood mononuclear cells (PBMCs) of healthy controls (HC), amnestic mild cognitive impairment (aMCI) and AD patients. Senescence-associated ßeta-galactosidase (SA-ß-Gal) activity, G0-G1 phase cell-cycle arrest, p16 and p53 were analyzed by flow cytometry, while IL-6 and IL-8 mRNA were analyzed by qPCR, and phosphorylated H2A histone family member X (γH2AX) was analyzed by immunofluorescence. Senescent cells in the brain tissue were determined with lipofuscin staining. An increase in the number of senescent cells was observed in the frontal cortex and hippocampus of advanced AD patients. PBMCs of aMCI patients, but not in AD, showed increased SA-ß-Gal compared with HCs. aMCI PBMCs also had increased IL-6 and IL8 mRNA expression and number of cells arrested at G0-G1, which were absent in AD. Instead, AD PBMCs had significantly increased p16 and p53 expression and decreased γH2Ax activity compared with HC. This study reports that several markers of cellular senescence can be measured in PBMCs of aMCI and AD patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Biomarcadores , Senescência Celular , Disfunção Cognitiva/patologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , RNA Mensageiro , Proteína Supressora de Tumor p53
5.
Front Nutr ; 7: 163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072794

RESUMO

Macroalgae stand out for their high content of dietary fiber (30-75%) that include soluble, sulfated (fucoidan, agaran, carrageenan, and ulvan) and non-sulfated (laminaran and alginate) polysaccharides. Many studies indicate that these compounds exert varied biological activities and health-promoting effects and for this reason, there is a growing interest for using them in food products. The aim of this review was to critically evaluate prebiotic properties of algal polysaccharides, i.e., their ability to exert biological activities by modulating the composition and/or diversity of gut microbiota (GM). Pre-clinical studies show that the non-sulfated alginate and laminaran are well-fermented by GM, promoting the formation of short chain fatty acids (SCFAs) including butyrate, and preventing that of harmful putrefactive compounds (NH3, phenol, p-cresol, indole and H2S). Alginate increases Bacteroides, Bifidobacterium, and Lactobacillus species while laminaran mostly stimulates Bacteroides sp. Results with sulfated polysaccharides are more questionable. Agarans are poorly fermentable but agarose-oligosaccharides exhibit an interesting prebiotic potential, increasing butyrate-producing bacteria and SCFAs. Though carrageenan-oligosaccharides are also fermented, their use is currently limited due to safety concerns. Regarding fucoidan, only one study reports SCFAs production, suggesting that it is poorly fermented. Its effect on GM does not indicate a clear pattern, making difficult to conclude whether it is beneficial or not. Notably, fucoidan impact on H2S production has not been evaluated, though some studies report it increases sulfate-reducing bacteria. Ulvan is badly fermented by GM and some studies show that part of its sulfate is dissimilated to H2S, which could affect colonic mitochondrial function. Accordingly, these results support the use of laminaran, alginate and agaro-oligosaccharides as prebiotics while more studies are necessary regarding that of fucoidan, carrageenan and ulvan. However, the realization of clinical trials is necessary to confirm such prebiotic properties in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...