Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1166017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152289

RESUMO

Introduction: Juvenile dermatomyositis (JDM) is a rare yet serious childhood systemic autoimmune condition that primarily causes skin rashes and inflammatory myopathy of the proximal muscles. Although the associated immune response involves the innate and adaptive arms, a detailed analysis of the pertinent immune cells remains to be performed. This study aims to investigate the dynamic changes of cell type, cell composition and transcriptional profiles in peripheral blood and muscle tissues, and in order to clarify the involvement of immune cells in the pathogenesis of JDM and provide a theoretical reference for JDM. Methods: Single-cell RNA sequencing combined with bioinformatic analyses were used to investigate the dynamic changes in cell composition and transcriptional profiles. Results: Analysis of 45,859 cells revealed nine and seven distinct cell subsets in the peripheral blood and muscle tissues respectively. IFITM2+ and CYP4F3+ monocytes were largely produced, and CD74+ smooth muscle cells (SMCs) and CCL19+ fibroblasts were identified as inflammatory-related cell subtypes in JDM patients, exhibiting patient-specific cell population heterogeneity.The dynamic gene expression patterns presented an enhanced type I interferon response in peripheral blood monocytes and T-cells, and SMCs and fibroblasts in muscle of untreated JDM patients. EGR1 and IRF7 may play central roles in the inflammation in both CD74+ SMCs and CCL19+ fibroblasts. Moreover, inflammatory-related monocytes could regulate T-cells, and the interaction between immune cells and SMCs or fibroblasts in muscle was enhanced under the inflammatory state. Conclusions: Immune dysregulation is one of the key pathogenic factors of JDM, and type I interferon responses are significantly enhanced in peripheral blood Monos and T cells as well as SMCs and fibroblasts. EGR1 and IRF7 may play central roles in the inflammation and are considered as potential therapeutic targets for JDM.

2.
Nat Commun ; 13(1): 4735, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961985

RESUMO

Molecular conformations induced by the rotation about single bonds play a crucial role in chemical transformations. Revealing the relationship between the conformations of chiral catalysts and the enantiodiscrimination is a formidable challenge due to the great difficulty in isolating the conformers. Herein, we report a chiral catalytic system composed of an achiral catalytically active unit and an axially chiral 1,1'-bi-2-naphthol (BINOL) unit which are connected via a C-O single bond. The two conformers of the catalyst induced by the rotation about the C-O bond, are determined via single-crystal X-ray diffraction and found to respectively lead to the formation of highly important axially chiral 1,1'-binaphthyl-2,2'-diamine (BINAM) and 2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN) derivatives in high yields (up to 98%), with excellent enantioselectivities (up to 98:2 e.r.) and opposite absolute configurations. The results highlight the importance of conformational dynamics of chiral catalysts in asymmetric catalysis.


Assuntos
Diaminas , Catálise , Cristalografia por Raios X , Diaminas/química , Conformação Molecular
3.
Clin Chem Lab Med ; 59(2): 249-266, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32374277

RESUMO

Most hereditary diseases are incurable, but their deterioration could be delayed or stopped if diagnosed timely. It is thus imperative to explore the state-of-the-art and high-efficient diagnostic techniques for precise analysis of the symptoms or early diagnosis of pre-symptoms. Diagnostics based on clinical presentations, hard to distinguish different phenotypes of the same genotype, or different genotypes displaying similar phenotypes, are incapable of pre-warning the disease status. Molecular diagnosis is ahead of harmful phenotype exhibition. However, conventional gold-standard molecular classifications, such as karyotype analysis, Southern blotting (SB) and sequencing, suffer drawbacks like low automation, low throughput, prolonged duration, being labor intensive and high cost. Also, deficiency in flexibility and diversity is observed to accommodate the development of precise and individualized diagnostics. The aforementioned pitfalls make them unadaptable to the increasing clinical demand for detecting and interpreting numerous samples in a rapid, accurate, high-throughput and cost-effective manner. Nevertheless, capillary electrophoresis based on genetic information analysis, with advantages of automation, high speed, high throughput, high efficiency, high resolution, digitization, versatility, miniature and cost-efficiency, coupled with flexible-designed PCR strategies in sample preparation (PCR-CE), exhibit an excellent power in deciphering cryptic molecular information of superficial symptoms of genetic diseases, and can analyze in parallel a large number of samples in a single PCR-CE, thereby providing an alternative, accurate, customized and timely diagnostic tool for routine screening of clinical samples on a large scale. Thus, the present study focuses on CE-based nucleic acid analysis used for inherited disease diagnosis. Also, the limitations and challenges of this PCR-CE for diagnosing hereditary diseases are discussed.


Assuntos
Biomarcadores/análise , Eletroforese Capilar/métodos , Doenças Genéticas Inatas/diagnóstico , Ácidos Nucleicos/análise , Southern Blotting , Genótipo , Ensaios de Triagem em Larga Escala , Humanos , Reação em Cadeia da Polimerase , Espectrometria de Fluorescência
4.
Compr Rev Food Sci Food Saf ; 16(6): 1281-1295, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33371590

RESUMO

Food safety and food production are closely related to the health of consumers. Food-related accidents often cause tremendous losses of personnel and property. Thus, rapid detection and analysis of ingredients in food, tracing food sources, studying the optimal conditions for food production, and more are vital for preventing incidents related to safety. Conventional analysis based on proteomics, microbial cultures, and morphology, as well as biochemical tests based on metabonomics, are considered gold standards and used frequently, but they are labor-intensive, time-consuming, tedious, error-prone, and incapable of meeting the demand for rapid and precise detection at a large scale. Alternative detection methods that utilize capillary electrophoresis have the advantages of high efficiency, high throughput, high speed, and automation; these methods are coupled with various nucleic acid detection strategies to overcome the drawbacks of traditional identification methods, and to prevent false results. Therefore, this review focuses on the application of capillary electrophoresis based on nucleic acid detection in food analysis and provides an introduction to the limitations, advantages, and future developments of this approach.

5.
Clin Chem Lab Med ; 54(5): 707-38, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26352354

RESUMO

Rapid transmission, high morbidity, and mortality are the features of human infectious diseases caused by microorganisms, such as bacteria, fungi, and viruses. These diseases may lead within a short period of time to great personal and property losses, especially in regions where sanitation is poor. Thus, rapid diagnoses are vital for the prevention and therapeutic intervention of human infectious diseases. Several conventional methods are often used to diagnose infectious diseases, e.g. methods based on cultures or morphology, or biochemical tests based on metabonomics. Although traditional methods are considered gold standards and are used most frequently, they are laborious, time consuming, and tedious and cannot meet the demand for rapid diagnoses. Disease diagnosis using capillary electrophoresis methods has the advantages of high efficiency, high throughput, and high speed, and coupled with the different nucleic acid detection strategies overcomes the drawbacks of traditional identification methods, precluding many types of false positive and negative results. Therefore, this review focuses on the application of capillary electrophoresis based on nucleic detection to the diagnosis of human infectious diseases, and offers an introduction to the limitations, advantages, and future developments of this approach.


Assuntos
Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/microbiologia , DNA/análise , Bactérias/genética , Bactérias/isolamento & purificação , Eletroforese Capilar , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-25531868

RESUMO

To develop a highly sensitive method for analyzing nucleic acids using capillary gel electrophoresis with ultraviolet detection (CGE-UV), we combined matrix field-amplified with head-column field-amplified stacking injection (C-FASI) to employ the advantages of two methods. Without diminishing the resolution, a limit of detection of 0.13 ng/ml (signal/noise=3) in a 300,000-fold diluted sample was obtained, the sensitivity is 102,308 times higher than that achieved with normal pressure injection, 3077 times that with normal electrokinetic injection, 154 times that with pressure field-amplified sample stacking injection, and 31 times that with matrix field-amplified stacking injection. After establishing the method, we tested the detection of a φX174-Hae III digest DNA product without purification and with a high ionic strength. At the lowest dilution of 5000-fold, sample at a concentration of 10 ng/ml was enriched and detected. The relative standard deviations for migration time and peak area (n=3) were 0.03-1.15 and 0.72-6.42, respectively. To further validate C-FASI was applicable for real sample, a 400 bp PCR product without purification was directly detected with a limit of detection at the concentration of 6000-fold dilution (signal/noise=3), The relative standard deviations for migration time and peak area (n=6) were 0.44 and 4.8, respectively. These results indicated that C-FASI had good qualitative and quantitative detection abilities and CGE-UV based on C-FASI is easy to perform, practical, highly-sensitive and robust for nucleic acid detection, which makes it a highly valuable tool for genetic diagnostics based on nucleic acid analysis.


Assuntos
Eletroforese Capilar/métodos , Ácidos Nucleicos/análise , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta
7.
Clin Lab ; 60(8): 1253-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25185410

RESUMO

As the post-genome era comes, one of the trends of future medical developments is the timely diagnosis and prevention of diseases. The analysis of nucleic acid can diagnose the diseases accurately at gene level which can eliminate all kinds of false positive and negative results from phenotype and prescribe the individual prevention or therapy. As a result, a high-throughput test tool is needed for the analyses of a large number of clinical nucleic acid samples. Capillary electrophoresis (CE) has the advantages of high-efficiency, high-speed, microscale, automation, high-throughput, and cleanliness which can meet the medical requirements that mass data and a large number of samples need to be analyzed, leading CE to be the new technology considered for clinical disease diagnosis. This review puts the focus on the application of CE in clinical disease diagnosis. Meanwhile, it also gives a brief introduction of the drawbacks and future development of CE.


Assuntos
Doença/genética , Eletroforese Capilar/métodos , Ácidos Nucleicos/análise , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genótipo , Humanos , MicroRNAs/metabolismo , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Reação em Cadeia da Polimerase
8.
Anal Bioanal Chem ; 406(25): 6129-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25106543

RESUMO

Numerous strategies have been developed to mitigate the intrinsic low detection sensitivity that is a limitation of capillary electrophoresis. Among them, in-line stacking is an effective strategy to address the sensitivity challenge, and among the different stacking techniques, stacking based on field amplification is the most effective and simplest method of achieving high sensitivity without special complicated mechanisms or operations. This review introduces several stacking techniques based on field amplification. Field-amplified sample stacking, large-volume sample stacking, matrix field-amplified stacking injection (FASI), head-column FASI, matrix FASI combined with head-column FASI, FASI coupled with extraction and clean-up methods, electrokinetic supercharging, cation-anion selective exhaustive injection-sweeping-micellar electrokinetic chromatography, and newly developed techniques based on field amplification combined with other methods are included, and examples of straightforward methods for solving the sensitivity problem are provided. We also present a brief overview of the advantages, limitations, and future developments of these techniques.


Assuntos
Eletroforese Capilar/métodos , Proteínas/química , Animais , Eletroforese Capilar/instrumentação , Eletroforese Capilar/tendências , Humanos , Proteínas/isolamento & purificação
9.
Analyst ; 139(14): 3492-506, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24872166

RESUMO

Cancer is malignant disease that causes many deaths worldwide every year, with most deaths occurring in the middle and advanced stages of cancer. Numerous deaths can be avoided by detecting cancer at an early stage, making early diagnosis and timely therapy critical for cancer treatment. Analyses at the level of nucleic acids rather than phenotypes can eliminate various false-positive and -negative results, and diagnoses can occur at an earlier stage. Many techniques have been developed for this purpose, including capillary electrophoresis (CE), which has the advantages of high-efficiency, high-speed, high-throughput, automation, cleanliness, and versatility, and CE can be conducted on a microscale or coupled with other separation techniques. These advantages afford this technique the ability to meet the future medical requirements that will undoubtedly call for amassing large numbers of samples for analysis, suggesting that CE may become an important tool for providing data in clinical cancer diagnosis and therapy. This review focuses on CE-based nucleic acid detection as it is applied to cancer diagnosis and therapy, and provides an introduction to the drawbacks and future developments of analysis with CE.


Assuntos
Eletroforese Capilar/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Ácidos Nucleicos/análise , Ácidos Nucleicos/genética , Animais , Descoberta de Drogas , Eletroforese Capilar/instrumentação , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/genética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...