Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 340: 111960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103695

RESUMO

The accumulation of anthocyanins can be found in both the fruit and petioles of strawberries, but the fruit appears red while the petioles appear purple-red. Additionally, in the white-fruited diploid strawberries, the petioles can accumulate anthocyanins normally, suggesting a different synthesis pattern between the petioles and fruits. We screened the EMS mutagenized population of a red-fruited diploid strawberry 'Ruegen' and discovered a mutant which showed no anthocyanin accumulation in the petioles but normal accumulation in the fruit. Through BSA sequencing and allelic test, it was found that a mutation in FvDFR2 was responsible for this phenotype. Furthermore, the complex formed by the interaction between the petiole-specific FvMYB10L and FvTT8 only binds the promoter of FvDFR2 but not FvDFR1, resulting in the expression of only FvDFR2 in the petiole. FvDFR2 can catalyze the conversion of DHQ and eventually the formation of cyanidin and peonidin, giving the petiole a purplish-red color. In the fruit, however, both FvDFR1 and FvDFR2 can be expressed, which can mediate the synthesis of cyanidin and pelargonidin. Our study clearly reveals different regulation of FvDFR1 and FvDFR2 in mediating anthocyanin synthesis in petioles and fruits.


Assuntos
Antocianinas , Fragaria , Antocianinas/genética , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Fenótipo , Frutas/genética , Frutas/metabolismo , Diploide
2.
Plant Physiol ; 193(3): 1849-1865, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37477940

RESUMO

Fruit color is a very important external commodity factor for consumers. Compared to the most typical red octoploid strawberry (Fragaria × ananassa), the pink strawberry often sells for a more expensive price and has a higher economic benefit due to its outstanding color. However, few studies have examined the molecular basis of pink-colored strawberry fruit. Through an EMS mutagenesis of woodland strawberry (Fragaria vesca), we identified a mutant with pink fruits and green petioles. Bulked-segregant analysis sequencing analysis and gene function verification confirmed that the responsible mutation resides in a gene encoding flavanone-3-hydroxylase (F3H) in the anthocyanin synthesis pathway. This nonsynonymous mutation results in an arginine-to-histidine change at position 130 of F3H. Molecular docking experiments showed that the arginine-to-histidine mutation results in a reduction of intermolecular force-hydrogen bonding between the F3H protein and its substrates. Enzymatic experiments showed a greatly reduced ability of the mutated F3H protein to catalyze the conversion of the substrates and hence a blockage of the anthocyanin synthesis pathway. The discovery of a key residue in the F3H gene controlling anthocyanin synthesis provides a clear target of modification for the molecular breeding of strawberry varieties with pink-colored fruits, which may be of great commercial value.


Assuntos
Flavanonas , Fragaria , Antocianinas/genética , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Histidina/genética , Histidina/metabolismo , Simulação de Acoplamento Molecular , Oxigenases de Função Mista/metabolismo , Mutação/genética , Flavanonas/metabolismo
3.
Plants (Basel) ; 12(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050075

RESUMO

Plant growth and development processes are tightly regulated at multiple levels, including transcriptional and post-transcriptional levels, and the RNA-binding protein YTH regulates gene expression during growth and development at the post-transcriptional level by regulating RNA splicing, processing, stability, and translation. We performed a systematic characterization of YTH genes in diploid forest strawberry and identified a total of nine YTH genes. With the help of phylogenetic analysis, these nine genes were found to belong to two different groups, YTHDC and YTHDF, with YTHDF being further subdivided into three subfamilies. Replication analysis showed that YTH3 and YTH4 are a gene pair generated by tandem repeat replication. These two genes have similarities in gene structure, number of motifs, and distribution patterns. Promoter analysis revealed the presence of multiple developmental, stress response, and hormone-response-related cis-elements. Analysis of available transcriptome data showed that the expression levels of most of the YTH genes were stable with no dramatic changes during development in different tissues. However, YTH3 maintained high expression levels in all tissues and during fruit development, and YTH4 was expressed at higher levels in tissues such as flowers, leaves, and seedlings, while it was significantly lower than YTH3 in white fruits and ripening fruits with little fluctuation. Taken together, our study provides insightful and comprehensive basic information for the study of YTH genes in strawberry.

4.
PeerJ ; 10: e13462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586128

RESUMO

Soil enzymes and microorganisms are both important to maintaining good soil quality and are also sensitive to changes in agricultural management. The individual effects of tillage, straw incorporation and nitrogen (N) fertilization on soil enzymes and microflora have been widely acknowledged, but their interactive effect remains largely unknown. In a 5-year in-situ field study, effects of rotary (RTS) and plow tillage (PTS) practices with straw incorporation combined with three N fertilization levels (0 kg N ha-1, CK; 187 kg N ha-1, MN; 337 kg N ha-1, HN) on soil enzyme activities and microbial communities were assessed. Our results showed that the activities of ß-glucosidase (ßG), N-acetylglucosaminidase (NAG) and acid phosphatase (APH) were improved in RTS+MN. The bacterial and fungal abundances in RTS+MN and RTS+HN were 1.27-27.51 times higher than those in other treatment groups. However, the bacterial and fungal alpha diversities were enhanced in PTS+MN and PTS+CK compared with other treatments, respectively. Proteobacteria and Basidiomycota were the predominant phylum for the respective bacterial and fungal communities. Moreover, significant interactive effects were found in the fungal community composition, but only minor impacts were observed on the bacterial community composition. Soil water content and penetration resistance contributed more to the soil enzyme activity and microbial community than other soil properties investigated, whereas there was a significant positive correlation between ßG and APH activities and microbial abundance. These findings can provide new insights into tillage with straw incorporation and N fertilization on maize cultivation in northeast China.


Assuntos
Microbiota , Solo , Solo/química , Zea mays , Nitrogênio/análise , Microbiologia do Solo , Microbiota/genética , China , Bactérias/genética , Fertilização
6.
Front Plant Sci ; 12: 789002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956287

RESUMO

In most grapevine planting regions, especially in south of China, plenty of rainfall and high water level underground are the characteristic of the area, a series of problem during fruit ripening easily caused poor color quality. Thereby affecting fruit quality, yield and economic benefits. The accumulation of anthocyanin is regulated by transcriptional regulatory factor and a series of cultivation measures, root restriction can make plants in the environment of stress and stress relief, root restriction induced the higher expression of VvMYB15 and VvWRKY40, and consistent with anthocyanin accumulation. Whether and how root restriction-inducible VvMYB15 and VvWRKY40 transcription factor regulate anthocyanin synthesis in grape berry is still unclear. In this study, we identified that the transient overexpression of VvMYB15 and VvWRKY40 alone or both in strawberry fruits and grape berries can promote anthocyanin accumulation and increase the expression level of anthocyanin biosynthetic genes, indicating VvMYB15 and VvWRKY40 play a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both VvMYB15 and VvWRKY40 specifically bind to the promoter region of VvF3'5'H and VvUFGT, and the expression of VvF3'5'H and VvUFGT is further activated through the heterodimer formation between VvMYB15 and VvWRKY40. Finally, we confirmed that VvMYB15 promoted anthocyanin accumulation by interacting with VvWRKY40 in grape berries, our findings provide insights into a mechanism involving the synergistic regulation of root restriction-dependent coloration and biosynthesis via a VvMYB15 and VvWRKY40 alone or both in grape berries.

7.
Front Plant Sci ; 12: 774943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819941

RESUMO

Flavonoids belong to the family of polyphenolic secondary metabolites and contribute to fruit quality traits. It has been shown that MBW complexes (MYB-bHLH-WD40) regulate the flavonoids biosynthesis in different plants, but only a limited number of MBW complexes have been identified in strawberry species in general. In this study, we identified 112 R2R3-MYB proteins in woodland strawberry; 12 of them were found to have potential functions in regulating flavonoids biosynthesis by phylogenetic analysis. qRT-PCR assays showed that FvMYB3, FvMYB9, FvMYB11, FvMYB22, FvMYB64, and FvMYB105 mostly expressed at green stage of fruit development, aligned with proanthocyanidins accumulation; FvMYB10 and FvMYB41 showed higher expression levels at turning and ripe stages, aligned with anthocyanins accumulation. These results suggest that different MYBs might be involved in flavonoids biosynthesis at specific stages. Furthermore, FvMYB proteins were demonstrated to interact with FvbHLH proteins and induce expression from the promoters of CHS2 and DFR2 genes, which encode key enzymes in flavonoids biosynthesis. The co-expression of FvMYB and FvbHLH proteins in strawberry fruits also promoted the accumulation of proanthocyanidins. These findings confirmed and provided insights into the biofunction of MBW components in the regulation of flavonoid biosynthesis in woodland strawberry.

8.
Plant Cell ; 33(6): 1961-1979, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33768238

RESUMO

Light is a key environmental cue that fundamentally regulates plant growth and development, which is mediated by the multiple photoreceptors including the blue light (BL) photoreceptor cryptochrome 1 (CRY1). The signaling mechanism of Arabidopsis thaliana CRY1 involves direct interactions with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)/SUPPRESSOR OF PHYA-105 1 and stabilization of COP1 substrate ELONGATED HYPOCOTYL 5 (HY5). H2A.Z is an evolutionarily conserved histone variant, which plays a critical role in transcriptional regulation through its deposition in chromatin catalyzed by SWR1 complex. Here we show that CRY1 physically interacts with SWC6 and ARP6, the SWR1 complex core subunits that are essential for mediating H2A.Z deposition, in a BL-dependent manner, and that BL-activated CRY1 enhances the interaction of SWC6 with ARP6. Moreover, HY5 physically interacts with SWC6 and ARP6 to direct the recruitment of SWR1 complex to HY5 target loci. Based on previous studies and our findings, we propose that CRY1 promotes H2A.Z deposition to regulate HY5 target gene expression and photomorphogenesis in BL through the enhancement of both SWR1 complex activity and HY5 recruitment of SWR1 complex to HY5 target loci, which is likely mediated by interactions of CRY1 with SWC6 and ARP6, and CRY1 stabilization of HY5, respectively.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Criptocromos/metabolismo , Histonas/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Clorofila/biossíntese , Clorofila/metabolismo , Proteínas Cromossômicas não Histona/genética , Criptocromos/genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Luz , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Plantas Geneticamente Modificadas , Mapas de Interação de Proteínas , Nicotiana/genética , Nicotiana/metabolismo
9.
Plant Physiol ; 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33744968

RESUMO

Sex determination is a crucially important developmental event that is pervasive throughout nature and enhances the adaptation of species. Among plants, cucumber (Cucumis sativus L.) can generate both unisexual and bisexual flowers, and the sex type is mainly controlled by several 1-aminocyclopropane-1-carboxylic acid (ACC) synthases. However, the regulatory mechanism of these synthases remains elusive. Here, we used gene expression analysis, protein-DNA interaction assays and transgenic plants to study the function of a gynoecium-specific gene, ETHYLENE RESPONSE FACTOR31 (CsERF31), in female flower differentiation. We found that in a predetermined female flower, ethylene signalling activates CsERF31 by CsEIN3, and then CsERF31 stimulates CsACS2, which triggers a positive feedback loop to ensure female rather than bisexual flower development. A similar interplay is functionally conserved in melon (Cucumis melo L.). Knockdown of CsERF31 by RNAi causes defective bisexual flowers to replace female flowers. Ectopic expression of CsERF31 suppresses stamen development and promotes pistil development in male flowers, demonstrating that CsERF31 functions as a sex switch. Taken together, our data confirm that CsERF31 represents the molecular link between female-male determination and female-bisexual determination, and provide mechanistic insight into how ethylene promotes female flowers, rather than bisexual flowers, in cucumber sex determination.

10.
Plant Physiol ; 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33787923

RESUMO

Sex determination is a crucially important developmental event that is pervasive throughout nature and enhances the adaptation of species. Among plants, cucumber (Cucumis sativus L.) can generate both unisexual and bisexual flowers, and the sex type is mainly controlled by several 1-aminocyclopropane-1-carboxylic acid synthases (CsACSs). However, the regulatory mechanism of these synthases remains elusive. Here, we used gene expression analysis, protein-DNA interaction assays, and transgenic plants to study the function of a gynoecium-specific gene, ETHYLENE RESPONSE FACTOR31 (CsERF31), in female flower differentiation. We found that in a predetermined female flower, ethylene signaling activates CsERF31 by CsEIN3, and then CsERF31 stimulates CsACS2, which triggers a positive feedback loop to ensure female rather than bisexual flower development. A similar interplay is functionally conserved in melon (Cucumis melo L.). Knockdown of CsERF31 by RNAi causes defective bisexual flowers to replace female flowers. Ectopic expression of CsERF31 suppresses stamen development and promotes pistil development in male flowers, demonstrating that CsERF31 functions as a sex switch. Taken together, our data confirm that CsERF31 represents the molecular link between female-male determination and female-bisexual determination, and provide mechanistic insight into how ethylene promotes female flowers, rather than bisexual flowers, in cucumber sex determination.

11.
Hortic Res ; 8(1): 21, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33518711

RESUMO

Trichomes that cover the epidermis of aerial plant organs play multiple roles in plant protection. Compared with a unicellular trichome in model plants, the development mechanism of the multicellular trichome is largely unclear. Notably, variations in trichome development are often accompanied by defects in the biosynthesis of cuticle and secondary metabolites; however, major questions about the interactions between developmental differences in trichomes and defects in metabolic pathways remain unanswered. Here, we characterized the glabrous mutant mict/csgl1/cstbh via combined metabolomic and transcriptomic analyses to extend our limited knowledge regarding multicellular trichome development and metabolism in cucumber. Mict was found to be explicitly expressed within trichome cells. Transcriptomic analysis indicated that genes involved in flavonoid and cuticle metabolism are significantly downregulated in mict mutants. Further metabolomic analysis confirmed that flavonoids, lipids, and cuticle compositions are dramatically altered in mict mutants. Additional studies revealed that Mict regulates flavonoid, lipid, and cuticle biosynthesis by likely directly binding to downstream functional genes, such as CsTT4, CsFLS1, CsCER26, and CsMYB36. These findings suggest that specific metabolic pathways (e.g., flavonoids and cuticle components) are co-regulated by Mict and provide insights into transcriptional regulation mechanisms of multicellular trichome development and its specific metabolism in cucumber.

13.
Plant Sci ; 298: 110578, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771176

RESUMO

FvMYB10 protein has been proved to be a transcriptional switch for anthocyanin biosynthesis in strawberry. A single nucleotide mutation in R2 domain of FvMYB10, named as FvmMYB10, is found to be responsible for the white color in strawberry variety 'Yellow Wonder'. However, the mechanism of FvmMYB10 suppresses anthocyanin biosynthesis in strawberry is largely unknown. Here, we show that the transcriptional level of FvMYB10 and key enzyme genes involved in anthocyanin biosynthesis in 'Yellow Wonder' were lower than that in red color variety 'Ruegen', especially at turning to ripening stage. The low expression level of FvmMYB10 may due to his inability to bind to its promoter region and activate its own expression. We found FvMYB10-overexpressing, but not FvmMYB10-overexpressing, promote anthocyanin accumulation in Arabidopsis and strawberry fruit despite of their similar expression levels. In addition, subcellular localization assay indicated that FvMYB10-YFP, but not FvmMYB10-YFP, localized to sub-nucleus foci (speckles) in the nucleus, implying the mutation of FvMYB10 might inhibit its transcription factor activity and eventually interfere with its function. Subsequently, we confirmed that FvMYB10 bind to the promoter region of some specific key enzyme genes, including FvCHS2 and FvDFR1 and activated their expression. While FvmMYB10 failed to binding and transcriptional activating these genes. Our findings provide insights into molecular mechanism of anthocyanin biosynthesis regulated by MYB10 in strawberry fruits.


Assuntos
Fragaria/fisiologia , Proteínas de Plantas/genética , Transcrição Gênica , Antocianinas/metabolismo , Fragaria/genética , Frutas/genética , Frutas/fisiologia , Proteínas de Plantas/metabolismo
14.
Plant Cell Physiol ; 61(4): 826-837, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32016380

RESUMO

Anthocyanin accumulation is transcriptionally regulated by the MYB-bHLH-WD40 complex. Light is indispensable for anthocyanin accumulation, and light-inducible MYB and HY5 were considered to promote anthocyanin accumulation in many fruits. Whether and how light-inducible bHLH transcription factor and HY5 regulate anthocyanin synthesis in strawberry is unknown. In this study, we identified a bHLH transcription factor, FvbHLH9, which was induced by light as well as FvHY5, and found that, similar to FvHY5, the transient overexpression and interference FvbHLH9 in strawberry fruits can promote and decrease anthocyanin accumulation, respectively, indicating FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both FvHY5 and FvbHLH9 specifically bind to the promoter region of some key enzyme genes, including FvDFR, and the expression of FvDFR was activated through the heterodimer formation between FvHY5 and FvbHLH9. Finally, we confirmed that FvbHLH9-promoted anthocyanin accumulation is dependent on HY5-bHLH heterodimerisation in Arabidopsis. Our findings provide insights into a mechanism involving the synergistic regulation of light-dependent coloration and anthocyanin biosynthesis via a HY5-bHLH heterodimer formed by the interaction of FvHY5 and FvbHLH9 in strawberry fruits.


Assuntos
Antocianinas/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fragaria/genética , Frutas/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Flavonóis/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação
15.
New Phytol ; 225(2): 848-865, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514232

RESUMO

Arabidopsis CRY1 and phyB are the primary blue and red light photoreceptors mediating blue and red light inhibition of hypocotyl elongation, respectively. Auxin is a pivotal phytohormone involved in promoting hypocotyl elongation. CRY1 and phyB interact with and stabilize auxin/indole acetic acid proteins (Aux/IAAs) to inhibit auxin signaling. The present study investigated whether photoreceptors might interact directly with Auxin Response Factors (ARFs) to regulate auxin signaling. Protein-protein interaction studies demonstrated that CRY1 and phyB interact physically with ARF6 and ARF8 through their N-terminal domains in a blue and red light-dependent manner, respectively. Moreover, the N-terminal DNA-binding domain of ARF6 and ARF8 is involved in mediating their interactions with CRY1. Genetic studies showed that ARF6 and ARF8 act partially downstream from CRY1 and PHYB to regulate hypocotyl elongation under blue and red light, respectively. Chromatin immunoprecipitation-PCR assays demonstrated that CRY1 and phyB mediate blue and red light repression of the DNA-binding activity of ARF6 and ARF6-target gene expression, respectively. Altogether, the results herein suggest that the direct repression of auxin-responsive gene expression mediated by the interactions of CRY1 and phyB with ARFs constitutes a new layer of the regulatory mechanisms by which light inhibits auxin-induced hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , DNA de Plantas/metabolismo , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Luz , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Criptocromos/química , Criptocromos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Modelos Biológicos , Fitocromo B/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Domínios Proteicos , Fatores de Transcrição/metabolismo
16.
BMC Plant Biol ; 19(1): 157, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023214

RESUMO

BACKGROUND: Pedicel orientation can affect the female flower orientation and seed yield in cucumber. A spontaneous mutant possessing upward growth of pedicels was identified in the wild type inbred strain 9930 and named upward-pedicel (up). The morphological and genetic analyses of up were performed in this study. In order to clone the up gene, 933 F2 individuals and 524 BC1 individuals derived from C-8-6 (WT) and up were used for map-based cloning. RESULTS: up was mapped to a 35.2 kb physical interval on chromosome 1, which contains three predicted genes. Sequencing analysis revealed that a 5-bp deletion was found in the second exon of Csa1G535800, and it led to a frameshift mutation resulting in a premature stop codon. The candidate gene of CsUp (Csa1G535800) was further confirmed via genomic and cDNA sequencing in biparental and natural cucumber populations. Sequencing data showed that a 4-bp deletion was found in the sixth exon of Csa1G535800 in CGN19839, another inbred line, and there was also a mutation of an amino acid in Csa1G535800 that could contribute to the upward growth of pedicels in CGN19839. Moreover, it was found that Csa1G535800 exhibited strong expression in the pedicel of WT, suggesting its important role in development of pedicel orientation. Thus, Csa1G535800 was considered to be the candidate gene of CsUp. CONCLUSIONS: CsUp encodes an Auxilin-like protein and controls pedicel orientation in cucumber. The identification of CsUp may help us to understand the mechanism of pedicel orientation development and allow for investigation of novel functions of Auxilin-like proteins in cucumber.


Assuntos
Auxilinas/genética , Mapeamento Cromossômico , Cucumis sativus/genética , Genes de Plantas , Estudos de Associação Genética , Mutação/genética , Sequência de Aminoácidos , Sequência de Bases , Segregação de Cromossomos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes Recessivos , Loci Gênicos , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Plant Cell Physiol ; 60(2): 353-366, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388258

RESUMO

Light is an important environmental factor, which mainly inhibits hypocotyl elongation through various photoreceptors. In contrast, brassinosteroids (BRs) are major hypocotyl elongation-promoting hormones in plants, which could optimize photomorphogenesis concurrent with external light. However, the precise molecular mechanisms underlying the antagonism of light and BR signaling remain largely unknown. Here we show that the Arabidopsis red light receptor phyB is involved in inhibition of BR signaling via its direct interaction with the BR transcription factor BES1. In our study, the phyB mutant displays BR hypersensitivity, which is repressed in transgenic plants overexpressing phyB, suggesting that phyB negatively regulates the BR signaling pathway. In addition, protein interaction results show that phyB directly interacts with dephosphorylated BES1, the physiologically active form of BES1 induced by BR, in a red light-dependent manner. Genetic analyses suggest that phyB may act partially through BES1 to regulate BR signaling. Transcriptomic data and quantitative real-time PCR assay further show that phyB-mediated red light inhibits BR signaling by repressing expression of BES1 target genes, including the BR biosynthesis genes DWF4, the SAUR family and the PRE family genes required for promoting cell elongation. Finally, we found that red light treatment inhibits the DNA-binding activity of BES1 and photoactivated phyB represses the transcriptional activity of BES1 under red light. Taken together, we suggest that the interaction of phyB with dephosphorylated BES1 may allow plants to balance light and BR signaling by repressing transcriptional activity of BES1 to regulate expression of its target genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo B/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/fisiologia , Fosforilação , Fitocromo B/fisiologia
18.
Mol Plant ; 12(2): 229-247, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30576873

RESUMO

Phytochrome B (phyB), the primary red light photoreceptor, promotes photomorphogenesis in Arabidopsis by interacting with the basic helix-loop-helix transcriptional factor PIF3 and inducing its phosphorylation and degradation. Heterotrimeric G proteins are known to regulate various developmental processes in plants and animals. In Arabidopsis, the G-protein ß subunit AGB1 is known to repress photomorphogenesis. However, whether and how phyB and AGB1 coordinately regulate photomorphogenesis are largely unknown. Here we show that phyB physically interacts with AGB1 in a red light-dependent manner and that AGB1 interacts directly with PIF3. Moreover, we demonstrate that the AGB1-PIF3 interaction inhibits the association of PIF3 with phyB, leading to reduced phosphorylation and degradation of PIF3, whereas the phyB-AGB1 interaction represses the association of PIF3 with AGB1, resulting in enhanced phosphorylation and degradation of PIF3. Our results suggest that phyB and AGB1 antagonistically regulate PIF3 stability by dynamically interacting with each other and PIF3. This dynamic mechanism may allow plants to balance phyB and G-protein signaling to optimize photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Fitocromo B/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Escuridão , Regulação da Expressão Gênica de Plantas , Fosforilação , Ligação Proteica , Estabilidade Proteica
19.
Mol Plant ; 11(10): 1248-1263, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30176372

RESUMO

Light and the heterotrimeric G-protein are known to antagonistically regulate photomorphogenesis in Arabidopsis. However, whether light and G-protein coordinate the regulation of photomorphogenesis is largely unknown. Here we show that the blue light photoreceptor cryptochrome 1 (CRY1) physically interacts with the G-protein ß subunit, AGB1, in a blue light-dependent manner. We also show that AGB1 directly interacts with HY5, a basic leucine zipper transcriptional factor that acts as a critical positive regulator of photomorphogenesis, to inhibit its DNA-binding activity. Genetic studies suggest that CRY1 acts partially through AGB1, and AGB1 acts partially through HY5 to regulate photomorphogenesis. Moreover, we demonstrate that blue light-triggered interaction of CRY1 with AGB1 promotes the dissociation of HY5 from AGB1. Our results suggest that the CRY1 signaling mechanism involves positive regulation of the DNA-binding activity of HY5 mediated by the CRY1-AGB1 interaction, which inhibits the association of AGB1 with HY5. We propose that the antagonistic regulation of HY5 DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Criptocromos/metabolismo , DNA de Plantas/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Desenvolvimento Vegetal/fisiologia , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Luz , Transdução de Sinal Luminoso , Proteínas Nucleares/antagonistas & inibidores , Ligação Proteica
20.
Front Plant Sci ; 9: 1091, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154805

RESUMO

In cucumber (Cucumis sativus L.), the differentiation and development of female flowers are important processes that directly affect the fruit yield and quality. Sex differentiation is mainly controlled by three ethylene synthase genes, F (CsACS1G), M (CsACS2), and A (CsACS11). Thus, ethylene plays a key role in the sex differentiation in cucumber. The "one-hormone hypothesis" posits that F and M regulate the ethylene levels and initiate female flower development in cucumber. Nonetheless, the precise molecular mechanism of this process remains elusive. To investigate the mechanism by which F and M regulate the sex phenotype, three cucumber near-isogenic lines, namely H34 (FFmmAA, hermaphroditic), G12 (FFMMAA, gynoecious), and M12 (ffMMAA, monoecious), with different F and M loci were generated. The transcriptomic analysis of the apical shoots revealed that the expression of the B-class floral homeotic genes, CsPI (Csa4G358770) and CsAP3 (Csa3G865440), was immensely suppressed in G12 (100% female flowers) but highly expressed in M12 (∼90% male flowers). In contrast, CAG2 (Csa1G467100), which is an AG-like C-class floral homeotic gene, was specifically highly expressed in G12. Thus, the initiation of female flowers is likely to be caused by the downregulation of B-class and upregulation of C-class genes by ethylene production in the floral primordium. Additionally, CsERF31, which was highly expressed in G12, showed temporal and spatial expression patterns similar to those of M and responded to the ethylene-related chemical treatments. The biochemical experiments further demonstrated that CsERF31 could directly bind the promoter of M and promote its expression. Thus, CsERF31 responded to the ethylene signal derived from F and mediated the positive feedback regulation of ethylene by activating M expression, which offers an extended "one-hormone hypothesis" of sex differentiation in cucumber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...