Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6142, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798263

RESUMO

Electrocatalytic CO2 reduction into value-added multicarbon products offers a means to close the anthropogenic carbon cycle using renewable electricity. However, the unsatisfactory catalytic selectivity for multicarbon products severely hinders the practical application of this technology. In this paper, we report a cascade AgCu single-atom and nanoparticle electrocatalyst, in which Ag nanoparticles produce CO and AgCu single-atom alloys promote C-C coupling kinetics. As a result, a Faradaic efficiency (FE) of 94 ± 4% toward multicarbon products is achieved with the as-prepared AgCu single-atom and nanoparticle catalyst under ~720 mA cm-2 working current density at -0.65 V in a flow cell with alkaline electrolyte. Density functional theory calculations further demonstrate that the high multicarbon product selectivity results from cooperation between AgCu single-atom alloys and Ag nanoparticles, wherein the Ag single-atom doping of Cu nanoparticles increases the adsorption energy of *CO on Cu sites due to the asymmetric bonding of the Cu atom to the adjacent Ag atom with a compressive strain.

2.
J Am Chem Soc ; 145(39): 21263-21272, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738111

RESUMO

The stability presented by trivalent metal-organic frameworks (MOFs) makes them an attractive class of materials. With phosphonate-based ligands, crystallization is a challenge, as there are significantly more binding motifs that can be adopted due to the extra oxygen tether compared to carboxylate counterparts and the self-assembly processes are less reversible. Despite this, we have reported charge-assisted hydrogen-bonded metal-organic frameworks (HMOFs) consisting of [Cr(H2O)6]3+ and phosphonate ligands, which were crystallographically characterized. We sought to use these HMOFs as a crystalline intermediate to synthesize ordered Cr(III)-phosphonate MOFs. This can be done by dehydrating the HMOF to remove the aquo ligands around the Cr(III) center, forcing metal-phosphonate coordination. Herein, a new porous HMOF, H-CALF-50, is synthesized and then dehydrated to yield the MOF CALF-50. CALF-50 is ordered, although it is not single crystalline. It does, however, have exceptional stability, maintaining crystallinity and surface area after boiling in water for 3 weeks and soaking in 14.5 M H3PO4 for 24 h and 9 M HCl for 72 h. Computational methods are used to study the HMOF to MOF transformation and give insight into the nature of the structure and the degree of heterogeneity.

3.
Chemistry ; 29(18): e202203620, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36592402

RESUMO

Metal-organic frameworks (MOFs) are porous material formed by the self-assembly of metallic ligands and organic linkers. They are a good candidate for CO2 gas capture because they have large surface areas and the metal or linker can be tuned to improve CO2 uptake. In the quest for water and acid stable MOFs, a phosphonate-based organic linker has recently been designed by Glavinovic et al. (Chem. Eur. J. 2022, 28, e202200874). By combining ionic calcium nodes, water and methanol molecules, they formed a microporous network, CALF-37. This network has been shown to be robust and can maintain its pore shape even in absence of water molecules or by the inclusion of gas molecules, such as CO2 . The network can be heated to release the water and methanol molecules and form a dehydrated MOF, which retains its shape with the imprinted pore within. Herein, we perform molecular dynamics (MD) simulations in order to provide insight into the CO2 capture and sequestration ability of the CALF-37. We model the dehydration of the inactivated MOF (HCALF-37) in the absence and in the presence of methanol molecules by progressively withdrawing water molecules from the MOF networks. We determine the crystal structure of the intermediate states from HCALF-37 to CALF-37 and shed light on the critical role of water molecules in the mediation of metal-linker bonds. Our calculations also reveal that the favorable interactions between the CO2 molecules and the aromatic core of the linkers and metallic ions are responsible for the efficient sequestration of the gas in the CALF-37.

4.
J Phys Condens Matter ; 33(44)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34348246

RESUMO

Using first-principles simulations, we focus on the study of Co3O4-Mn3O4mixed oxides, which have recently shown alluring features as thermochemical heat storage materials. We provide fundamental atomistic-level insight into the thermodynamics and kinetics of a series of non-stoichiometric Co3-xMnxO4-y(0 ⩽x⩽ 3 andy= 0, 0.125, 0.250) bulk systems, by examining in detail the formation and diffusion processes of oxygen vacancies as a function of Mn content. We find a preference for the formation of vacancies atx= 1.5. And we predict a significant drop of diffusion barriers forx⩾ 1.5, when Mn atoms start to populate the spinel octahedral sites as Mn3+. Our results pave the way for better understanding the underlying mechanisms that govern oxygen vacancy dynamics in Co3-xMnxO4in general, and, in particular, the reversible reduction and re-oxidation reactions of these promising mixed oxides for thermal energy storage. Nevertheless, some discrepancies are found between our calculations on bulk models and recent experimental insights from the literature, which suggests that surface and finite size effects might play an important role in controlling the observed macroscopic behavior of these materials during reversible reduction and re-oxidation cycles.

5.
ACS Nano ; 13(3): 3512-3521, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30860809

RESUMO

Graphene-based two-dimensional (2D) materials are promising candidates for a number of different energy applications. A particularly interesting one is in next generation supercapacitors, where graphene is being explored as an electrode material in combination with room temperature ionic liquids (ILs) as electrolytes. Because the amount of energy that can be stored in such supercapacitors critically depends on the electrode-electrolyte interface, there is considerable interest in understanding the structure and properties of the graphene/IL interface. Here, we report the changes in the properties of graphene upon adsorption of a homologous series of alkyl imidazolium tetrafluoroborate ILs using a combination of experimental and theoretical tools. Raman spectroscopy reveals that these ILs cause n-type doping of graphene, and the magnitude of doping increases with increasing cation chain length despite the expected decrease in the density of surface-adsorbed ions. Molecular modeling simulations show that doping originates from the changes in the electrostatic potential at the graphene/IL interface. The findings described here represent an important step in developing a comprehensive understanding of the graphene/IL interface.

6.
J Phys Chem Lett ; 7(14): 2714-21, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27349897

RESUMO

Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used. Here we report the exfoliation of graphite in N-methyl-2-pyrrolidinone, in the presence of heneicosane linear alkanes terminated with different head groups. These molecules act as stabilizing agents during exfoliation. The efficiency of the exfoliation in terms of the concentration of exfoliated single- and few-layer graphene flakes depends on the functional head group determining the strength of the molecular dimerization through dipole-dipole interactions. A thermodynamic analysis is carried out to interpret the impact of the termination group of the alkyl chain on the exfoliation yield. This combines molecular dynamics and molecular mechanics to rationalize the role of functionalized alkanes in the dispersion and stabilization process, which is ultimately attributed to a synergistic effect of the interactions between the molecules, graphene, and the solvent.

7.
Nanotechnology ; 25(14): 145303, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24633069

RESUMO

We describe a method for continuous colloidal pattern replication using contact photolithography. Cr-on-quartz masks are fabricated using colloidal nanosphere lithography and subsequently used as photolithography stamps. Hexagonal pattern arrangements with different dimensions (980, 620 and 480 nm, using colloidal particles with these respective diameters) have been studied. When the mask and the imaged resist layer were in intimate contact, a high fidelity pattern replica was obtained after photolithographic exposure and processing. In turn, the presence of an air gap in between was found to affect the projected image on the photoresist layer, with a strong dependence on the mask feature size and height of the air gap. Pattern replication, inversion and hybridization were achieved for the 980 nm period mask; no hybridization for the 620 nm one; and only pattern replication for the 480 nm one. These results are interpreted in the framework of a 'Talbot-Fabry-Perot' effect. Numerical simulations corroborate the experimental findings, providing insight into the processes involved and highlighting the important parameters affecting the exposure pattern. This approach allows complex subwavelength patterning and is relevant for three-dimensional layer-by-layer printing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...