Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34634570

RESUMO

For many years, jellyfish were described as 'dead ends' in marine food webs, due to their high-water content and low nutritional value. However, it has been confirmed that silver pomfret (Pampus argenteus) has a particular preference for preying on jellyfish. In this study, we determined the effect of consuming jellyfish on the intestinal microbes of silver pomfret. Analysis of bacterial 16S rRNA gene amplicons showed that jellyfish had a dramatic impact on the composition of the gut microbiota. The content of Proteobacteria was reduced from 99% to 51%, while Firmicutes, Bacteroidetes and Actinobacteria increased, accounting for 35%, 9% and 2% of the total flora, respectively. At the genus level, the content of Photobacterium decreased sharply to <1% of the total flora. By contrast, Lactobacillus, Burkholderia and Sphingomonas increased to 12%, 9% and 7% of the total flora, respectively. After feeding jellyfish, the functions of intestinal microbes and the activity of digestive enzymes also changed, resulting in better digestion and absorption of jellyfish. The results provide insights into the specific bacterial taxa within the silver pomfret intestinal microbiome that are impacted by jellyfish. Silver pomfret can better digest and absorb jellyfish by adjusting the intestinal microbial composition. The findings provide a theoretical basis for the digestive mechanism by which silver pomfret consume jellyfish.


Assuntos
Microbioma Gastrointestinal , Perciformes , Animais , Perciformes/genética , Proteínas , RNA Ribossômico 16S/genética
2.
3 Biotech ; 11(4): 192, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927983

RESUMO

Many fish species are known to feed on jellyfish. Herein, we observed the effects of jellyfish feeding on silver pomfret using gas chromatography tandem time-of-flight mass spectrometry (GC-TOF-MS) based on metabolomics. We studied the effects of feeding on jellyfish on skin and serum immune of silver pomfret. Healthy silver pomfret (initial weight, 13.40 ± 1.565 g) was divided into two groups: control and feeding. The pomfrets were fed jellyfish at 2, 6, 12, 24, and 72 h, and samples were obtained. Statistical analysis revealed that after jellyfish feeding, most serum immune indicators did not show a significant change; however, skin immune indicators indicated that silver pomfret elicit a stress response on encountering jellyfish, gradually adapting to their presence. We therefore conducted further experiments involving two groups: group A, which was not fed any extra jellyfish, and group B, which was fed extra jellyfish (approximately 10% weight of silver pomfret) every day for 60 days. Orthogonal partial least squares discriminant analysis led to the identification of stronger biomarkers, with the liver metabolome showing obvious variations between the groups (group B vs. A). After feeding jellyfish by silver pomfret, some amino acids, amines, and unsaturated fatty acids in the liver tissue showed a significant increase. Our results, thus, not only reveal changes in physiological indices of silver pomfret after feeding on jellyfish but also provide a new idea for further optimizing the feed formula for silver pomfret culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...