Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36991865

RESUMO

This study proposes a three-spacecraft formation reconfiguration strategy of minimum fuel for space gravitational wave detection missions in the high Earth orbit (105 km). For solving the limitations of measurement and communication in long baseline formations, a control strategy of a virtual formation is applied. The virtual reference spacecraft provides a desired relative state between the satellites, which is then used to control the motion of the physical spacecraft to maintain the desired formation. A linear dynamics model based on relative orbit elements' parameterization is used to describe the relative motion in the virtual formation, which facilitates the inclusion of J2, SRP, and lunisolar third-body gravity effects and provides a direct insight into the relative motion geometry. Considering the actual flight scenarios of gravitational wave formations, a formation reconfiguration strategy based on continuous low thrust is investigated to achieve the desired state at a given time while minimizing interference to the satellite platform. The reconfiguration problem is considered a constrained nonlinear programming problem, and an improved particle swarm algorithm is developed to solve this problem. Finally, the simulation results demonstrate the performance of the proposed method in improving the maneuver sequence distribution and optimizing maneuver consumption.

2.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146370

RESUMO

The establishment of a laser link between satellites, i.e., the acquisition phase, is a key technology for space-based gravitational detection missions, and it becomes extremely complicated when the long distance between satellites, the inherent limits of the sensor accuracy, the narrow laser beam divergence and the complex space environment are considered. In this paper, we investigate the laser acquisition problem of a new type of satellite equipped with two two-degree-of-freedom telescopes. A predefined-time controller law for the acquisition phase is proposed. Finally, a numerical simulation was conducted to demonstrate the effectiveness of the proposed controller. The results showed that the new strategy has a higher efficiency and the control performance can meet the requirements of the gravitational detection mission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...