Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(14): 5839-5848, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797890

RESUMO

The multiple-metal-nanoparticle tagging strategy has generally been applied to the multiplexed detection of multiple analytes of interest such as microRNAs (miRNAs). Herein, it was used for the first time to improve both the specificity and sensitivity of a novel mass spectroscopic platform for miRNA detection. The mass spectroscopic platform was developed through the integration of the ligation reaction, hybridization chain reaction amplification, multiple-metal-nanoparticle tagging, and inductively coupled plasma mass spectrometry. The high specificity resulted from the adoption of the ligation reaction is further enhanced by the multiple-metal-nanoparticle tagging strategy. The combination of hybridization chain reaction amplification and metal nanoparticle tagging endows the proposed platform with the feature of high sensitivity. The proposed mass spectrometric platform achieved quite satisfactory quantitative results for Let-7a in real-world cell line samples with accuracy comparable to that of the real-time quantitative reverse-transcriptase polymerase chain reaction method. Its limit of detection and limit of quantification for Let-7a were experimentally determined to be about 0.5 and 10 fM, respectively. Furthermore, due to the unique way of utilizing the multiple-metal-nanoparticle tagging strategy, the proposed platform can unambiguously discriminate between the target miRNA and nontarget ones with single-nucleotide polymorphisms based on their response patterns defined by the relative mass spectral intensities among the multiple tagged metal elements and can also provide location information of the mismatched bases. Its unique advantages over conventional miRNA detection methods make the proposed platform a promising and alternative tool in the fields of clinical diagnosis and biomedical research.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Limite de Detecção , Espectrometria de Massas , MicroRNAs/genética , Hibridização de Ácido Nucleico
2.
Talanta ; 224: 121848, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379064

RESUMO

A facile MALDI-TOF mass spectrometric platform for quantitative analysis of protein biomarkers was developed based on magnetic ZnFe2O4 nanoparticles and mass tagging signal amplification. In this platform, magnetic ZnFe2O4 nanoparticles functionalized with an aptamer of the biomarker of interest was used to magnetically separate silica nanoparticles modified with another aptamer of the target biomarker and a barcoding peptide from solution phase in the presence of the biomarker of interest. After the silica nanoparticles were dissolved by KHF2, the released barcoding peptide was detected by MALDI-TOF mass spectrometry with magnetic ZnFe2O4 nanoparticles used as assisting matrix of laser desorption ionization. Since the mass spectral intensity of the barcoding peptide is directly related to the concentration of the target biomarker, the proposed platform can be applied to the quantification of the target biomarker in complex biological samples. The effectiveness of the proposed platform was tested on the detection of carcinoembryonic antigen (CEA) in serum. Experimental results revealed that the proposed platform could achieve quite reliable quantitative results for CEA in human serum samples with accuracy comparable to a commercial CEA ELISA Kit. Its limit of detection and limit of quantification for CEA were estimated to be 0.6 × 10-3 and 1.8 × 10-3 ng/mL, respectively, considerably lower than the corresponding values reported in literature. Due to its features of simplicity in design, extremely low background signal, high sensitivity and selectivity, the proposed method can be further developed to be a competitive alternative for the quantification of CEA and other protein biomarkers as well.


Assuntos
Nanopartículas , Biomarcadores , Humanos , Magnetismo , Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA