Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 110(9): 3171-3175, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139259

RESUMO

Nano α-glycine crystals, γ-glycine crystals, and amorphous solid dispersion (ASD) of glycine were prepared through solvent-free ball milling of commercial α-glycine. The solid-state polymorph conversion of glycine from α to γ was completely realized by ball milling with 0.2 wt.% NaCl for 1 h or by ball milling with 0.02 wt.% NaCl for 1 h with subsequent storage for one week. The ASD of glycine was prepared by ball milling α-glycine with an equal amount of CaCl2 for 1 h. We studied the effect of inorganic salt types and their concentrations on the extent of polymorph conversion and amorphization of glycine in our experiments. This solvent-free ball milling method could be used for the synthesis of polymorphs and amorphous phase of drugs and other organic materials.


Assuntos
Glicina , Cloreto de Sódio , Estabilidade de Medicamentos , Solventes
2.
Materials (Basel) ; 13(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074997

RESUMO

In order to discuss the load capacity and displacement of masonry constructed with recycled concrete and self-insulation blocks, one type of 10.6 MPa compressive strength block and three kinds of mortar with M15, M10, and M5 compressive strengths are selected. The constitutive model and corresponding parameters selection of different materials in the ABAQUS numerical simulation are analyzed, and the numerical simulation analysis and experimental tests of the load capacity and displacement of masonry constructed with mortars of different strengths are carried out. The results show that masonry compression failure is controlled by the mortar or block that has the lower compressive strength. The displacement of masonry increases with the mortar compressive strength increase, and the higher mortar compressive strength is beneficial for improving the load capacity and displacement of masonry. Reasonable selection of the constitutive model and parameters will help to obtain reasonable results for the ABAQUS numerical simulation. Construction quality and loading method will affect the load capacity and displacement of the masonry. The above conclusion can provide reference for the engineering application of recycled concrete and self-insulation blocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...