Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38770712

RESUMO

Herein, we present a novel ultrasensitive graphene field-effect transistor (GFET) biosensor based on lithium niobate (LiNbO3) ferroelectric substrate for the application of breast cancer marker detection. The electrical properties of graphene are varied under the electrostatic field, which is generated through the spontaneous polarization of the ferroelectric substrate. It is demonstrated that the properties of interface between graphene and solution are also altered due to the interaction between the electrostatic field and ions. Compared with the graphene field-effect biosensor based on the conventional Si/SiO2 gate structure, our biosensor achieves a higher sensitivity to 64.7 mV/decade and shows a limit of detection down to 1.7 fM (equivalent to 12 fg·mL-1) on the detection of microRNA21 (a breast cancer marker). This innovative design combining GFETs with ferroelectric substrates holds great promise for developing an ultrahigh-sensitivity biosensing platform based on graphene that enables rapid and early disease diagnosis.

2.
Heliyon ; 9(12): e22792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125487

RESUMO

Silicon nano/microstructures are widely utilized in the semiconductor industry, and plasma etching is the most prominent method for fabricating silicon nano/microstructures. Among the variety of silicon nano/microstructures, black silicon with light-trapping properties has garnered broad interest from both the scientific and industrial communities. However, the fabrication mechanism of black silicon remains unclear, and the light absorption of black silicon only focuses on the near-infrared region thus far. Herein, we demonstrate that black silicon can be fabricated from individual flower-like silicon microstructures. Using fluorocarbon gases as etchants, silicon flower microstructures have been formed via maskless plasma etching. Black silicon forming from silicon flower microstructures exhibits strong absorption with wavelength from 0.25 µm to 20 µm. The result provides novel insight into the understanding of the plasma etching mechanism in addition to offering further significant practical applications for device manufacturing.

3.
Micromachines (Basel) ; 15(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38258172

RESUMO

In this paper, we report an all-dielectric metamaterial terahertz biosensor, which exhibits a high Q factor of 35 at an 0.82 resonance peak. A structure with an electromagnetically induced transparency effect was designed and fabricated to perform a Mie resonance for the terahertz response. The biosensor exhibits a limit of detection of 100 pg/mL for cytokine interleukin 2 (IL-2) and a linear response for the logarithm of the concentration of IL-2 in the range of 100 pg/mL to 1 µg/mL. This study implicates an important potential for the detection of cytokines in serum and has potential application in the clinical detection of cytokine release syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...