Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
J Ethnopharmacol ; : 118320, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740107

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kelisha capsules (KLS) are often used to treat acute diarrhoea, bacillary dysentery, heat stroke, and other diseases. One of its components, Asarum, contains aristolochic acid I which is both nephrotoxic and carcinogenic. However, the aristolochic acid (AA) content in KLS and its toxicity remain unclear. AIM OF THE STUDY: The aims of this study were to quantitatively determine the contents of five aristolochic acid analogues (AAAs) in Asarum and KLS, and systematically evaluate the in vivo toxicity of KLS in rats. MATERIALS AND METHODS: Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the content of the five AAAs in Asarum and KLS. Sprague-Dawley rats were administered KLS at 0, 0.75, 1.5, and 3.0 g/kg respectively, and then sacrificed after 4 weeks of administration or after an additional 2 weeks of recovery. The endpoints assessed included body weight measurements, serum biochemistry and haematology indices, and clinical and histopathological observations. RESULTS: The AAAs content in Asarum sieboldii Miq. (HB-ESBJ) were much lower than those of the other Asarums. The contents of AA I, AA IVa, and aristolactam I in KLS were in the ranges of 0.03-0.06 µg/g, 1.89-2.16 µg/g, and 0.55-1.60 µg/g, respectively, whereas AA II and AA IIIa were not detected. None of the rats showed symptoms of toxic reactions and KLS was well tolerated throughout the study. Compared to the control group, the activated partial thromboplastin time values of rats in the 1.5 and 3.0 g/kg groups significantly reduced after administration (P < 0.05). In addition, the serum triglycerides of male rats in the 0.75 and 1.5 g/kg groups after administration, and the 0.75, 1.5, 3.0 g/kg groups after recovery were significantly decreased (P < 0.01 or P < 0.001). No significant drug-related toxicological changes were observed in other serum biochemical indices, haematology, or histopathology. CONCLUSIONS: The AA I content in KLS met the limit requirements (<0.001%) of the Chinese Pharmacopoeia. Therefore, it is safe to use KLS in the short-term. However, for safety considerations, attention should be paid to the effects of long-term KLS administration on coagulation function and triglyceride metabolism.

2.
Plants (Basel) ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592885

RESUMO

The characterization of the PYL/RCAR ABA receptors in a great deal of plant species has dramatically advanced the study of ABA functions involved in key physiological processes. However, the genes in this family are still unclear in Lycium (Goji) plants, one of the well-known economically, medicinally, and ecologically valuable fruit crops. In the present work, 12 homologs of Arabidopsis PYL/RCAR ABA receptors were first identified and characterized from Lycium (L.) barbarum (LbPYLs). The quantitative real-time PCR (qRT-PCR) analysis showed that these genes had clear tissue-specific expression patterns, and most of them were transcribed in the root with the largest amount. Among the three subfamilies, while the Group I and Group III members were down-regulated by extraneous ABA, the Group II members were up-regulated. At 42 °C, most transcripts showed a rapid and violent up-regulation response to higher temperature, especially members of Group II. One of the genes in the Group II members, LbPYL10, was further functionally validated by virus-induced gene silencing (VIGS) technology. LbPYL10 positively regulates heat stress tolerance in L. barbarum by alleviating chlorophyll degradation, thus maintaining chlorophyll stability. Integrating the endogenous ABA level increase following heat stress, it may be concluded that LbPYL-mediated ABA signaling plays a vital role in the thermotolerance of L. barbarum plants. Our results highlight the strong potential of LbPYL genes in breeding genetically modified L. barbarum crops that acclimate to climate change.

3.
J Ethnopharmacol ; 328: 117917, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38442807

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The adverse effects of Fructus Psoraleae (FP), especially liver injury, have attracted wide attention in recent years. AIM OF THE STUDY: To establish a system to explore potential hepatotoxic targets and the chief culprit of liver injury based on clinical experience, network pharmacological method, molecular docking, and in vitro and in vivo experiments. MATERIALS AND METHODS: Clinical applications and adverse reactions to FP were obtained from public literatures. Components absorbed in the blood were selected as candidates to search for potential active targets (PATs) of FP. Subsequently, potential pharmacological core targets (PPCTs) were screened through the "drug targets-disease targets" network. Non-drug active targets (NPATs) were obtained by subtracting the PPCTs from the PATs. The potential hepatotoxic targets (PHTs) of FP were the intersection targets obtained from Venn analysis using NPATs, hepatotoxic targets, and adverse drug reaction (ADR) targets provided by the databases. Then, potential hepatotoxic components and targets were obtained using the "NPATS-component" network relationship. Molecular docking and in vitro and in vivo hepatotoxicity experiments were performed to verify the targets and related components. RESULTS: Overall, 234 NPATs were acquired from our analysis, and 6 targets were identified as PHTs. Results from molecular docking and in vitro and in vivo experiments showed that angelicin is the leading cause of liver injury in FP, and VKORC1 plays an important role. CONCLUSION: The results indicate that six targets, especially VKORC1, are associated with the PHTs of FP, and angelicin is the leading culprit involved in FP liver injury via inhibition of VKORC1.


Assuntos
Medicamentos de Ervas Chinesas , Furocumarinas , Psoralea , Simulação de Acoplamento Molecular , Fígado , Furocumarinas/efeitos adversos , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia
4.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339043

RESUMO

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Retroelementos/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo
5.
Appl Environ Microbiol ; 90(3): e0190023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334408

RESUMO

Endosymbiosis is a widespread and important phenomenon requiring diverse model systems. Ciliates are a widespread group of protists that often form symbioses with diverse microorganisms. Endosymbioses between the ciliate Euplotes and heritable bacterial symbionts are common in nature, and four essential symbionts were described: Polynucleobacter necessarius, "Candidatus Protistobacter heckmanni," "Ca. Devosia symbiotica," and "Ca. Devosia euplotis." Among them, only the genus Polynucleobacter comprises very close free-living and symbiotic representatives, which makes it an excellent model for investigating symbiont replacements and recent symbioses. In this article, we characterized a novel endosymbiont inhabiting the cytoplasm of Euplotes octocarinatus and found that it is a close relative of the free-living bacterium Fluviibacter phosphoraccumulans (Betaproteobacteria and Rhodocyclales). We present the complete genome sequence and annotation of the symbiotic Fluviibacter. Comparative analyses indicate that the genome of symbiotic Fluviibacter is small in size and rich in pseudogenes when compared with free-living strains, which seems to fit the prediction for recently established endosymbionts undergoing genome erosion. Further comparative analysis revealed reduced metabolic capacities in symbiotic Fluviibacter, which implies that the symbiont relies on the host Euplotes for carbon sources, organic nitrogen and sulfur, and some cofactors. We also estimated substitution rates between symbiotic and free-living Fluviibacter pairs for 233 genes; the results showed that symbiotic Fluviibacter displays higher dN/dS mean value than free-living relatives, which suggested that genetic drift is the main driving force behind molecular evolution in endosymbionts. IMPORTANCE: In the long history of symbiosis research, most studies focused mainly on organelles or bacteria within multicellular hosts. The single-celled protists receive little attention despite harboring an immense diversity of symbiotic associations with bacteria and archaea. One subgroup of the ciliate Euplotes species is strictly dependent on essential symbionts for survival and has emerged as a valuable model for understanding symbiont replacements and recent symbioses. However, almost all of our knowledge about the evolution and functions of Euplotes symbioses comes from the Euplotes-Polynucleobacter system. In this article, we report a novel essential symbiont, which also has very close free-living relatives. Genome analysis indicated that it is a recently established endosymbiont undergoing genome erosion and relies on the Euplotes host for many essential molecules. Our results provide support for the notion that essential symbionts of the ciliate Euplotes evolve from free-living progenitors in the natural water environment.


Assuntos
Betaproteobacteria , Euplotes , Filogenia , Simbiose/genética , Euplotes/genética , Euplotes/microbiologia , Betaproteobacteria/genética , Bactérias/genética , Genoma Bacteriano , Genômica
6.
Int J Biol Macromol ; 254(Pt 1): 127743, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287569

RESUMO

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The single-celled eukaryote Euplotes exhibit high frequency of PRF. However, the molecular mechanism of modulating Euplotes PRF remains largely unknown. Here, we identified two novel eIF5A genes, eIF5A1 and eIF5A2, in Euplotes octocarinatus and found that the Eo-eIF5A2 gene requires a -1 PRF to produce complete protein product. Although both Eo-eIF5As showed significant structural similarity with yeast eIF5A, neither of them could functionally replace yeast eIF5A. Eo-eIF5A knockdown inhibited +1 PRF of the η-tubulin gene. Using an in vitro reconstituted translation system, we found that hypusinated Eo-eIF5A (Eo-eIF5AH) can promote +1 PRF at the canonical AAA_UAA frameshifting site of Euplotes. The results showed eIF5A is a novel trans-regulator of PRF in Euplotes and has an evolutionary conserved role in regulating +1 PRF in eukaryotes.


Assuntos
Euplotes , Mudança da Fase de Leitura do Gene Ribossômico , Mudança da Fase de Leitura do Gene Ribossômico/genética , Euplotes/genética , Euplotes/metabolismo , Saccharomyces cerevisiae/genética
8.
Heliyon ; 9(4): e15333, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123969

RESUMO

Cheqianzi Decoction (CQD) is a Traditional Chinese Medicine (TCM) formula comprising four herbs and is recorded in the Ancient Materia Medica "Shengji Zonglu". Individually, these four herbs have been shown to reduce uric acid (UA) levels, to treat hyperuricemia (HUA), and alleviate kidney damage. However, the therapeutic efficacy of the CQD and related mechanism are not yet clear. In this study, high performance liquid chromatography (HPLC) analysis confirmed that the contents of the chemical components of the four herbal medicines were in accordance with the provisions of the Chinese Pharmacopoeia. A total of 99 potential targets were identified in the network pharmacology analysis of CQD, indicating its involvement in the regulation of inflammatory and apoptotic signaling pathways, and potential value for treating HUA and alleviating kidney injury. In vivo pharmacodynamic studies showed that compared with the Model group, significantly decreased levels of serum uric acid (SUA), serum creatinine (SCr), blood urea nitrogen (BUN) (all P < 0.05), and inflammatory factors (P < 0.01) were detected in the CQD group. Quantitative real-time PCR and Western blot analyses showed that compared with the Model group, adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) expression in the CQD group was significantly upregulated (P < 0.01) at both the mRNA and protein levels, while mRNA expression of Caspase3 and NOD-like receptor family member 3 (NLRP3) (P < 0.05) and protein expression of NLRP3 (P < 0.01) were significantly downregulated. In conclusion, CQD promotes UA excretion by activating ABCG2, and induces inflammasome NLRP3-mediated reduction in inflammatory and apoptotic factors to achieve renal protection. Thus, our findings indicate the therapeutic potential of CQD in HUA with kidney injury.

9.
J Ethnopharmacol ; 315: 116568, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37217154

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The nephrotoxicity and carcinogenicity induced by traditional Chinese medicines (TCMs) containing aristolochic acids (AAs) and related compound preparations have greatly limited their clinical application. While the toxicity of AA-I and AA-II is relatively clear, there are marked differences in the toxic effects of different types of aristolochic acid analogues (AAAs). Thus, the toxicity of TCMs containing AAAs cannot be evaluated based on the toxicity of a single compound. AIM OF THE STUDY: To systematically investigate the toxicity induced by Zhushalian (ZSL), Madouling (MDL) and Tianxianteng (TXT) as representative TCMs derived from Aristolochia. MATERIALS AND METHODS: AAA contents in ZSL, MDL and TXT were determined using HPLC. Subsequently, mice were treated for 2 weeks with high (H) and low (L) dosages of TCMs containing total AAA contents of 3 mg/kg and 1.5 mg/kg, respectively. Toxicity was evaluated using biochemical and pathological examination and was based on organ indices. Correlations between AAA contents and induced toxicity were analysed using multiple methods. RESULTS: Of the total AAA content, ZSL contained mainly AA-I and AA-II (>90%, of which AA-I accounted for 49.55%). AA-I accounted for 35.45% in MDL. TXT mainly contained AA-IVa (76.84%) and other AAAs accounted for <10%. Short-term toxicity tests indicated that ZSL and high-dose MDL induced obvious renal interstitial fibrosis and gastric injury, whereas TXT (high and low dosages) caused only slight toxicity. Correlation analysis suggested that AA-I might be the critical hazard factor for toxicity. CONCLUSIONS: The toxicity of TCMs containing AAAs cannot be generalised. The toxicity of TXT is relatively low compared with those of ZSL and MDL. The toxicity of Aristolochia depends mainly on the AA-I content; therefore, control of AA-I levels in TCMs and related compound preparations is required to reduce the risk of toxicity associated with the use of Aristolochia herbs in clinical settings.


Assuntos
Aristolochia , Ácidos Aristolóquicos , Medicamentos de Ervas Chinesas , Nefropatias , Animais , Camundongos , Aristolochia/química , Ácidos Aristolóquicos/toxicidade , Nefropatias/induzido quimicamente , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química
10.
Phytomedicine ; 114: 154815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062136

RESUMO

BACKGROUND: The safety of herbs containing aristolochic acids (AAs) has become a widespread concern. Previous reports indicate that AAs are highly nephrotoxic and carcinogenic, although there are more than 170 analogues of aristolochic acid. Not all AAs have the same degree of nephrotoxicity or carcinogenicity. Previous studies have found that aristolochic acid IVa (AA-IVa), the principal component of AAs within members of the Aristolochiaceae family, especially Asarum, a commonly used herb in China, has essentially no significant nephrotoxicity. However, several studies, including ours, have shown that aristolochic acid I (AA-I) is clearly nephrotoxic. PURPOSE: The focus of the study was to elucidate the molecular mechanism responsible for the difference in nephrotoxicity between the AA-I and AA-IVa. STUDY DESIGN/METHOD: Mice were administered with AA-I or AA-IVa for 22 weeks through the oral route, followed by a 50-week recovery time. The kidney tissues of mice were extracted at the end of 22 weeks. Pathological examination and proteomic detection (tandem mass tagging (TMT) and phosphorylated proteomics) were performed on the kidney tissue to investigate the key signaling pathways and targets of AAs-induced renal interstitial fibrosis (RIF). The key signaling pathways and targets were verified by Western blot (WB), siRNA transfection, and luciferase assays. RESULTS: AA-I caused severe nephrotoxicity, high mortality, and extensive RIF. However, the same AA-IVa dosage exhibited almost no nephrotoxicity and does not trigger RIF. The activation of the p38-STAT3-S100A11 signaling pathway and upregulated expression of α smooth muscle actin (α-SMA) and Bcl2-associated agonist of cell death (Bad) proteins could be the molecular mechanism underlying AA-I-induced nephrotoxicity. On the other hand, AA-IVa did not regulate the activation of the p38-STAT3-S100A11 signaling pathway and had relatively little effect on the expression of α-SMA and Bad. Consequently, the difference in the regulation of p38-STAT3-S100A11 pathway, α-SMA, and Bad proteins between AA-I and AA-IVa may be responsible for the divergence in their level of nephrotoxicity. CONCLUSION: This is the first study to reveal the molecular mechanism underlying the difference in nephrotoxicity between AA-I and AA-IVa. Whether STAT3 is activated or not may be the key factor leading to the difference in nephrotoxicity between AA-I and AA-IVa.


Assuntos
Ácidos Aristolóquicos , Nefropatias , Camundongos , Animais , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/farmacologia , Proteômica , Nefropatias/metabolismo , Transdução de Sinais , Fibrose , Rim , Proteínas S100/metabolismo , Proteínas S100/farmacologia
11.
J Ethnopharmacol ; 309: 116357, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36906156

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Adverse reactions to traditional Chinese medicine injections involve pseudo-allergic reactions (PARs). However, in clinical practice, "immediate allergic reactions" and PARs in response to these injections are not often differentiated. AIM OF THE STUDY: This study aimed to clarify the type of reactions produced by Shengmai injections (SMI) and elucidate the possible mechanism. MATERIALS AND METHODS: A mouse model was used to evaluate vascular permeability. Metabolomic and arachidonic acid metabolite (AAM) analyses were performed using UPLC-MS/MS, and the p38 MAPK/cPLA2 pathway was detected by western blotting. RESULTS: The first exposure to intravenous SMI rapidly and dose-dependently induced edema and exudative reactions in the ears and lungs. These reactions were not IgE-dependent and were likely to be PARs. Metabolomic analysis showed that endogenous substances were perturbed in SMI-treated mice, in which the arachidonic acid (AA) metabolic pathway was the most affected. SMI substantially increased the levels of AAMs in lung, including prostaglandins (PGs), leukotrienes (LTs), and hydroxy-eicosatetraenoic acids (HETEs). The p38 MAPK/cPLA2 signaling pathway was activated after a single SMI dose. Inhibitors of cyclooxygenase-2 and 5-lipoxygenase enzymes reduced exudation and inflammation in the ears and lungs of mice. CONCLUSION: Production of inflammatory factors that increase vascular permeability may result in SMI-induced PARs, and p38 MAPK/cPLA2 signaling pathway and downstream AA metabolic pathway are involved in the reactions.


Assuntos
Hipersensibilidade , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Ácido Araquidônico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sistema de Sinalização das MAP Quinases , Fosfolipases A2 Citosólicas/metabolismo
12.
J Ethnopharmacol ; 307: 116202, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36708883

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asarum heterotropoides f. mandshuricum (Maxim.) Kitag. (AH) is widely used to treat influenza, COVID-19, allergic rhinitis, headache, toothache, rheumatoid arthritis, and peptic ulcer. However, its clinical use is controversial due to the concern of aristolochic acid nephropathy (AAN) caused by its component aristolochic acid analogs (AAs). AIM OF THE STUDY: The chronic toxicity of AH decoction and its main components AA IVa (AA-IVa) and aristolactam I (AL-I) was evaluated in mice. MATERIALS AND METHODS: AAs contents in AH were quantitated by liquid chromatography-mass spectrometry. A parallel design was employed to examine the potential chronic toxicity of AH decoction at doses equivalent to 0.5, 1.6, and 5.0 g/kg AH (approximately 10-100 times the clinical doses for humans) and its major AA components at doses equivalent to that in 5.0 g/kg AH to mice after consecutive daily oral administration for 12 and 24 weeks, and at 32 weeks after withdrawal for 8 weeks. RESULTS: AH crude herb contained 2.18 µg/g of AA-I, 48.49 µg/g of AA-IVa, and 14.0 µg/g of AL-I. AH decoction contained 5.45 µg/g of AA-IVa and 2.71 µg/g of AL-I. None of AA-II and AA-IIIa were detected in AH. After long-term administration of AH decoction and its major components AA-IVa and AL-I, mice showed no signs of illness or body weight changes. In addition, biochemical and pathohistological examinations showed that long-term administration of AH decoction and its major components AA-IVa and AL-I did not alter 1) serum levels of glutamic-pyruvic transaminase, glutamic oxalacetic transaminase, alkaline phosphatase, creatinine, and urea nitrogen, 2) renal tissue mRNA expression of kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin, and 3) pathological morphology in the mouse liver, kidney, stomach, and bladder. CONCLUSIONS: AH has no obvious toxicity to mice and is relatively safe when it is used in the form of decoction. AA-IVa and AL-I, the two major AAs in AH, are not toxic to mice at the dose equivalent to that in the high dose of AH decoction. Considering the limited toxicological data on AH, we recommend that AH decoction medication should not overdose and the duration should not be too long.


Assuntos
Ácidos Aristolóquicos , Asarum , COVID-19 , Humanos , Camundongos , Animais , Asarum/química , COVID-19/metabolismo , Rim/patologia
13.
J Ethnopharmacol ; 302(Pt A): 115866, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36332760

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acteoside (ACT) is the main ingredient derived from the leaves of Rehmannia glutinosa (Dihuangye). Dihuangye has the function of clearing heat, replenishing qi and activating blood, nourishing yin and tonifying kidney in traditional Chinese medicine. Recent studies have demonstrated that Dihuangye can be used to treat nephritis and ACT is a promising antinephritic agent. AIM OF THE STUDY: To clarify the metabolites of ACT in biological samples and investigate the renoprotective effect and mechanism of ACT in rats with chronic glomerulonephritis (CGN). MATERIALS AND METHODS: In this study, the biotransformation of ACT in rat biological samples was clarified by quadrupole time-of-flight tandem mass spectrometry. The metabolites were validated by urine samples in nephropathy model rats. The effect of ACT and its metabolites was evaluated by glomerular podocyte injury due to high glucose. Based on an analysis of the ingredients in vivo, the potential therapeutic targets in the treatment of CGN were investigated by using network pharmacological analysis and molecular docking. Then, the renoprotective effect and mechanism of ACT were determined in rats in a passive Heymann nephritis (PHN) model. RESULTS: A total of 49 metabolites of ACT were detected and identified. Meanwhile, 21 metabolites were detected in nephropathy model rats. ACT was absorbed rapidly and transferred from the kidney, and the metabolites were eliminated via urine. The whole process lasted approximately 8 h. ACT had a significant protective effect on glomerular podocytes damaged by high glucose and 3,4-dihydroxyphenylacetic acid might be the main metabolite of ACT underlying its functions in vivo. The network pharmacology and molecular docking results showed 84 ACT-CGN targets, among which MAPK1, HRAS, AKT1, EGFR, and others were a highly correlated. In the PHN rat model, ACT significantly reduced the 24-h urine protein and serum creatinine concentrations, suppressed the leukocyte CD18 expression levels, decreased the serum tumor necrosis factor α (TNF-α) levels and tended to reduce serum interleukin 6 (IL-6) levels. ACT significantly reduced the platelet aggregation rate and inhibited the proliferative activity of splenic lymphocytes in response to the mitogen concanavalin A. Meanwhile, ACT inhibited transforming growth factor-ß and fibronectin expression in renal tissues and dose-dependently inhibited TNF-α and IL-6 production in RAW264.7 mouse macrophages at doses ranging from 1.8 to 1330 µg/mL. CONCLUSIONS: ACT had therapeutic effects on PHN rats, and its mechanism might be related to the inhibition of intercellular or intercellular-matrix adhesion, suppression of inflammatory response, regulation of immune function, improvement of tissue hemodynamics and hemorheology, and relief of fibrotic lesions.


Assuntos
Medicamentos de Ervas Chinesas , Glomerulonefrite , Camundongos , Ratos , Animais , Fator de Necrose Tumoral alfa , Simulação de Acoplamento Molecular , Interleucina-6 , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doença Crônica , Glucose
14.
J Eukaryot Microbiol ; 70(2): e12945, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36039907

RESUMO

Our knowledge of ciliate endosymbiont diversity greatly expanded over the past decades due to the development of characterization methods for uncultivable bacteria. Chlamydia-like bacteria have been described as symbionts of free-living amoebae and other phylogenetically diverse eukaryotic hosts. In the present work, a systematic survey of the bacterial diversity associated with the ciliate Euplotes octocarinatus strain Zam5b-1 was performed, using metagenomic screening as well as classical full-cycle rRNA approach, and a novel chlamydial symbiont was characterized. The metagenomic screening revealed 16S rRNA gene sequences from Polynucleobacter necessarius, three previously reported accessory symbionts, and a novel chlamydia-like bacterium. Following the full-cycle rRNA approach, we obtained the full-length 16S rRNA gene sequence of this chlamydia-like bacterium and developed probes for diagnostic fluorescence in situ hybridizations. The phylogenetic analysis of the 16S rRNA gene sequences unambiguously places the new bacterium in the family Rhabdochlamydiaceae. This is the first report of chlamydia-like bacterium being found in Euplotes. Based on the obtained data, the bacterium is proposed as a new candidate genus and species: "Candidatus Euplotechlamydia quinta."


Assuntos
Chlamydia , Cilióforos , Euplotes , Filogenia , Euplotes/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Chlamydia/genética , Cilióforos/genética , Simbiose , Análise de Sequência de DNA
15.
Curr Issues Mol Biol ; 44(12): 5933-5948, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36547065

RESUMO

Plant−water relations mediated by aquaporins (AQPs) play vital roles in both key plant growth processes and responses to environmental challenges. As a well-known medicinal and edible plant, the harsh natural growth habitat endows Lycium plants with ideal materials for stress biology research. However, the details of their molecular switch for water transport remain unclear. In the present work, we first identified and characterized AQP family genes from Lycium (L.) barbarum at the genome scale and conducted systemic bioinformatics and expression analyses. The results showed that there were 38 Lycium barbarum AQPs (LbAQPs) in L. barbarum, which were classified into four subfamilies, including 17 LbPIP, 9 LbTIP, 10 LbNIP, and 2 LbXIP. Their encoded genes were unevenly distributed on all 12 chromosomes, except chromosome 10. Three of these genes encoded truncated proteins and three genes underwent clear gene duplication events. Cis-acting element analysis indicated that the expression of LbAQPs may be mainly regulated by biotic/abiotic stress, phytohormones and light. The qRT-PCR assay indicated that this family of genes presented a clear tissue-specific expression pattern, in which most of the genes had maximal transcript levels in roots, stems, and leaves, while there were relatively lower levels in flowers and fruits. Most of the LbAQP genes were downregulated during L. barbarum fruit ripening and presented a negative correlation with the fruit relative water content (RWC). Most of their transcripts presented a quick and sharp upregulation response to heat stress following exposure of the 2-month-old seedlings to a 42 °C temperature for 0, 1, 3, 12, or 24 h. Our results proposed that LbAQPs were involved in L. barbarum key development events and abiotic stress responses, which may lay a foundation for further studying the molecular mechanism of the water relationship of Lycium plants, especially in harsh environments.

16.
Front Immunol ; 13: 1016730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439170

RESUMO

Drug hypersensitivity reactions induced by small molecule drugs encompass a broad spectrum of adverse drug reactions with heterogeneous clinical presentations and mechanisms. These reactions are classified into allergic drug hypersensitivity reactions and non-allergic drug hypersensitivity reactions. At present, the hapten theory, pharmacological interaction with immune receptors (p-i) concept, altered peptide repertoire model, and altered T-cell receptor (TCR) repertoire model have been proposed to explain how small molecule drugs or their metabolites induce allergic drug hypersensitivity reactions. Meanwhile, direct activation of mast cells, provoking the complement system, stimulating or inhibiting inflammatory reaction-related enzymes, accumulating bradykinin, and/or triggering vascular hyperpermeability are considered as the main factors causing non-allergic drug hypersensitivity reactions. To date, many investigations have been performed to explore the underlying mechanisms involved in drug hypersensitivity reactions and to search for predictive and preventive methods in both clinical and non-clinical trials. However, validated methods for predicting and diagnosing hypersensitivity reactions to small molecule drugs and deeper insight into the relevant underlying mechanisms are still limited.


Assuntos
Hipersensibilidade a Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/etiologia , Haptenos , Receptores Imunológicos/metabolismo
17.
Front Pharmacol ; 13: 874486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071842

RESUMO

Metabolites/impurities (MIs) of penicillin are normally considered to be the main substances inducing immediate hypersensitivity reactions in penicillin treatment. Our previous research found that penicillin can cause non-allergic hypersensitivity reactions (NAHRs) by directly triggering vascular hyperpermeability and exudative inflammation. However, the chief culprits and underlying mechanisms involved in penicillin-induced NAHRs have not yet been fully elucidated. In this study, we used a combination of approaches including a mouse non-allergic hypersensitivity reaction model, UPLC-MS/MS analyses of arachidonic acid metabolites (AAMs), immunoblotting technique, and molecular docking, etc to investigate the culprits involved in penicillin-induced hypersensitivity reactions. We found penilloic acid, one of the main MIs of penicillin, could trigger NAHRs via inducing increased vascular permeability, while the other MIs did no exhibit similar effect. Penilloic acid-induced reactions were not IgE-dependent. Significantly increased arachidonic acids and cascade metabolites in lungs, and activation of RhoA/ROCK signaling pathway in the ears and lungs of mice were noticed after once administration of penilloic acid. This study revealed that penilloic acid was the chief culprit involved in penicillin-induced immediate NAHRs in mice, which mainly associated with direct stimulation of vascular hyperpermeability and exudative inflammation. The activations of AAMs and RhoA/ROCK signaling pathway played important roles in these reactions.

18.
J Chromatogr A ; 1680: 463417, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35985151

RESUMO

Bile acids (BAs) play an important role in pre-diagnosing drug-induced liver injury (DILI). However, in clinical practice, different types of liver injury are characterized by different pathogeneses and pathological manifestations. Therefore, whether BAs can be used as biomarkers across different DILIs remains unclear. In this study, an ultra-performance chromatography-mass spectrometry (MS)/MS-based technique was developed for the simultaneous quantitative analysis of 31 BAs in the serum, liver, feces, urine, and intestinal contents of rats treated with acetaminophen (APAP) and geniposide to induce liver injury. The total extraction recovery for representative analytes ranged between 80.60% and 99.23% in the serum, urine, liver, feces, and intestinal contents. The correlation coefficients for all standard curves of the different matrices were at least 0.99. Validation of the BA analytical method including selectivity, residue, lower limit of quantification, accuracy, precision, matrix effect, and stability conformed with the biospecimen quality control standards of the Chinese Pharmacopoeia (version 2020). Serum biochemical and pathohistological analyses revealed APAP- and geniposide-induced hepatocellular and cholestatic DILI, respectively, with different effects on BA profiles in the enterohepatic circulation. Metabolomics further revealed that the trends in BA changes in the serum, feces, urine, and intestinal tissues were consistent between the geniposide- and APAP-treated groups. However, in the liver, the total BAs (TBA) concentration increased by 1.70 fold in the geniposide group but decreased by 43% in the APAP group compared with the control group. Multivariate analysis revealed differentially expressed BAs, including TCA, CA, and GCA, which are potential biomarkers for DILI, in the serum, liver, and urine following treatment with geniposide. Interestingly, the differentially expressed BAs in the APAP group were similar to those in the control group. Additionally, the magnitude of changes in the TBA in the urine (3.3 fold and 15.5 fold in the APAP and geniposide groups, respectively) was higher than that in the blood (290 fold and 640 fold in the APAP and geniposide groups, respectively). However, given the BA profiles after geniposide- and APAP-induced liver injury, BAs were found to be more suitable as biomarkers for diagnosing cholestatic liver injury. Overall, the BA assay developed in this study is rapid, simple, accurate, validated, sensitive, and suitable for analyzing the levels and distribution of BAs in various parts of the enterohepatic circulation.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Espectrometria de Massas em Tandem , Acetaminofen/análise , Acetaminofen/toxicidade , Animais , Ácidos e Sais Biliares/análise , Biomarcadores/análise , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Cromatografia , Circulação Êntero-Hepática , Iridoides , Fígado/metabolismo , Ratos , Espectrometria de Massas em Tandem/métodos
19.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3581-3588, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850812

RESUMO

When the drug induces the organism to produce a type Ⅰ allergic reaction, the combination of IgE and mast cells results in the degranulation of the mast cells. Release of vasoactive substances, increase in vascular permeability, and exudation of intravascular substances outside the blood vessels. Based on this pathophysiological mechanism, a mouse model that can objectively and quantitatively assess the allergic response to the injection has been established. ICR mice were sensitised by intraperitoneal injection of different doses of OVA once every two days for three times. 14 days after the last sensitization, a combination OVA solution of 4 times the sensitizing dose and Evans blue were injected intravenously into mice for the challenge. Compared with the normal group, OVA 0.625/2.5, 1.25/5, 2.5/10, 5/20 mg·kg~(-1) sensitized and challenged can induce allergic reactions mainly manifested by blue staining of the auricle in mice. Direct injection of OVA intravenously did not cause an auricular blue colouration reaction in mice. The passive cutaneous anaphylaxis reaction in mice was conducted with the aforementioned OVA-sensitized mouse serum, and there were obvious blue spots on the mouse's back. In addition, the content of anti-OVA-IgE in 5 mg·kg~(-1) OVA-sensitized mice was significantly increased. Ears and lungs of mice sensitized to OVA showed evident exudation inflammation. Significantly elevated inflammatory factors(VEGF and IL-10) were also detected in the serum of OVA-sensitized mice. The equivalent dose of OVA caused obvious allergic reactions in both guinea pigs and mice. Compared with nude mice, ICR and BALB/c mice are more sensitive to OVA sensitization. Injections of selected TCMI did not induce type Ⅰ allergic reactions in mice and guinea pigs, but there was a risk of inducing pseu-doallergic reactions in mice. The model is problematic and may well reflect the sensitization effect of allergens. It obtains the benefits of simple operation, accuracy, low cost, easy extension, and high repeatability. It is suitable for predicting and researching for IgE-dependent type Ⅰ allergic reactions.


Assuntos
Hipersensibilidade , Imunoglobulina E , Alérgenos , Animais , Modelos Animais de Doenças , Cobaias , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Ovalbumina
20.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3693-3700, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850825

RESUMO

The safety problem of traditional Chinese medicine containing aristolochic acid is of great concern in China and abraod, which poses a challenge in clinical application and supervision. There are many types of aristolochic acid analogues(AAAs) and 178 have been reported. According to the structure, they are classified into aristolochic acids(AAs) and aristololactams(ALs). The toxi-city is remarkably different among AAAs of different types. For example, AA-Ⅰ has strong nephrotoxicity and carcinogenicity, and the toxicity of AA-Ⅱ is lower than that of AA-Ⅰ. Besides, AA-Ⅳa and AA-Ⅰa are considered to have no obvious nephrotoxicity and carcinogenicity. The types and content of AAAs are significantly different among traditional Chinese medicines derived from different Aristolochiaceae species. For example, Asari Radix et Rhizoma and Aristolochiae Herba mainly consist of AAAs without obvious toxicity(such as AA-Ⅳa). The content of AAAs in compound preparations is related to the proportions of the medicinals and the processing method. The content of AA-Ⅰ in some compound preparations is very low or below the detection limit. Therefore, the author concludes that AAAs of different types have different toxicity, but not all AAAs has nephrotoxicity and carcinogenicity. Moreover, the toxicity of traditional Chinese medicines containing AAAs should not be generalized and AA-Ⅰ and AA-Ⅱ should be emphasized. In this paper, it is suggested that traditional Chinese medicine containing AAAs should be used rationally and research, analysis, and toxicological study of AAAs species and content should be strengthened. In addition, limit standards of AA-Ⅰ and AA-Ⅱ should be formulated and science-based supervision should be performed.


Assuntos
Aristolochia , Ácidos Aristolóquicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Medicamentos de Ervas Chinesas , Aristolochia/química , Ácidos Aristolóquicos/análise , Ácidos Aristolóquicos/toxicidade , Medicamentos de Ervas Chinesas/química , Humanos , Medicina Tradicional Chinesa , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...