Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(26): e2302917, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37401139

RESUMO

The charge transport in quasi-2D perovskites limits their applications despite the superior stability and optoelectronic properties. Herein, a novel strategy is proposed to enhance the charge transport by regulating 3D perovskite phase in quasi-2D perovskite films. The carbohydrazide (CBH) as an additive is introduced into (PEA)2 MA3 Pb4 I13 precursors, which slows down the crystallization process and improves the phase ratio and crystal quality of the 3D phase. This structure change results in a significant improvement in charge transport and extraction, leading to the device demonstrating an almost 100% internal quantum efficiency, a peak responsivity of 0.41 A W-1 , and a detectivity of 1.31 × 1012 Jones at 570 nm under 0 V bias. Furthermore, the air and moisture stability of (PEA)2 MA3 Pb4 I13 films is not deteriorated but gets significantly improved due to the better crystal quality and the passivation of defects by the residual CBH molecule. This work demonstrates a strategy for improving the charge transport properties of quasi-2D perovskites and also sheds light on solving the stability issue of 3D perovskite films via the proper passivation or additives, which will inspire the fast development of the perovskite community.

2.
J Hazard Mater ; 429: 128369, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236039

RESUMO

To properly manage nuclear wastes is critical to sustainable utilization of nuclear power and environment health. Here, we show an innovative carbiding strategy for sustainable management of radioactive graphite through digestion of carbon in H2O2. The combined action of intermolecular oxidation of graphite by MoO3 and molybdenum carbiding demonstrates success in gasifying graphite and sequestrating uranium for a simulated uranium-contaminated graphite waste. The carbiding process plays a triple role: (1) converting graphite into atomic carbon digestible in H2O2, (2) generating oxalic ligands in the presence of H2O2 to favor U-precipitation, and (3) delivering oxalic ligands to coordinate to MoVI-oxo anionic species to improve sample batching capacity. We demonstrate > 99% of uranium to be sequestrated for the simulated waste with graphite matrix completely gasifying while no detectable U-migration occurred during operation. This method has further been extended to removal of surface carbon layers for graphite monolith and thus can be used to decontaminate monolithic graphite waste with emission of a minimal amount of secondary waste. We believe this work not only provides a sustainable approach to tackle the managing issue of heavily metal contaminated graphite waste, but also indicates a promising methodology toward surface decontamination for irradiated graphite in general.


Assuntos
Grafite , Resíduos Radioativos , Radioatividade , Urânio , Carbono , Digestão , Resíduos Perigosos , Peróxido de Hidrogênio , Molibdênio , Resíduos Radioativos/análise , Resíduos Radioativos/prevenção & controle
3.
ACS Appl Mater Interfaces ; 12(20): 22853-22861, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32337968

RESUMO

Numerous trap states and low conductivity of compact TiO2 layers are major obstacles for achieving high power conversion efficiency and high-stability perovskite solar cells. Here we report an effective Na2S-doped TiO2 layer, which can improve the conductivity of TiO2 layers, the contact of the TiO2/perovskite interface, and the crystallinity of perovskite layers. Comprehensive investigations demonstrate that Na cations increase the conductivity of TiO2 layers while S anions change the wettability of TiO2 layers, thus improving the crystallinity of perovskite layers and passivate defects at the TiO2/PVK interface. The synergetic effects of dopants lead to a champion efficiency as high as 21.25% in unencapsulated perovskite solar cells (PSCs), with much-improved stability. Our work provides new insights on anion dopants in TiO2 layers, which is usually neglected in previous reports, and also proposes a simple approach to produce low-cost and high-performance electron transport layers for high-performance PSCs.

4.
Sci Bull (Beijing) ; 64(5): 315-320, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659595

RESUMO

Charge-transfer (CT) is an important enhancement mechanism in the field of surface-enhanced Raman scattering (SERS) that typically increases the Raman intensity of molecules by as much as 10-100 times. Herein, a low-cost Ag2O aggregates substrate was prepared via a facile chemical precipitation method, and the calculated CT-based enhancement factor of the uranyl ions adsorbed on it reached as high as 105, a metal-comparable value. The efficient photoinduced CT process from the valence band of Ag2O to the LUMO of uranyl ions under appropriate excitation sources resulted in the repulsion of the axial oxygen atoms of the OUO bond, which enhanced its polarizability, creating a more intense Raman mode. To the best of our knowledge, this study firstly reports such a strong photoinduced CT enhancement of uranyl ions, with concentrations of 10-8 mol L-1 or lower being detected using this Ag2O substrate. Most importantly, this research has shown that the photoinduced CT enhancement also contributes to the SERS of uranyl ions on pure Ag substrates which have often been ascribed to the electromagnetic enhancement in previous studies. In addition, Ag2O can be used to selectively detect uranyl ions without interference from many other molecules or ions because of the energy matching rule of the photoinduced CT process, which was readily available for uranyl detection in the environmental aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...