Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 968925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991450

RESUMO

Pitaya (genus Hylocereus) is a popular fruit. To develop pitaya fruit with greater marketability and high nutritional value, it is important to elucidate the roles of candidate genes and key metabolites that contribute to the coloration of the pitaya pulp and peel. By combining transcriptome and biochemical analyses, we compared and analyzed the dynamic changes in the peel and pulp of H. undatus (white pulp) and H. polyrhizus (red pulp) fruits at four key time points during ripening. Differential expression analysis and temporal analysis revealed the difference regulation in pathways of plant hormone signal transduction, phenylpropanoid biosynthesis, and betalain biosynthesis. Our results suggest that color formation of purple-red peel and pulp of pitaya is influenced by betalains. Increased tyrosine content and fluctuation in acylated betalain content may be responsible for pulp color formation, while some of the key genes in this network showed differential expression patterns during ripening between white pulp and red pulp fruits. The data and analysis results of this study provide theoretical basis for the red color formation mechanism of pitaya, which will facilitate future work to improve pitaya fruit physical appearance and marketability.

2.
ACS Omega ; 7(8): 6518-6530, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252648

RESUMO

Aroma is one of the major inherent quality characteristics in fruits. Understanding the composition of aroma volatiles and their biosynthesis mechanism is crucial to improving fruit quality. However, the biosynthesis mechanism of aroma volatiles has not been characterized yet in white-fleshed pitaya (Hylocereus undatus). This study was performed to investigate aroma volatiles and related gene expression patterns in the pulp of "mild grassy" and "strong grassy" aroma cultivars. Analysis of volatile composition and concentration showed that aldehydes, alcohols, esters, and alkenes were predominant in both cultivars. However, comparative analysis revealed a significant difference in the concentration of several metabolites, particularly hexanal and 1-hexanol. The results of the comparative transcriptome identified a large number of aroma-related differentially expressed genes. The majority of these genes were enriched in fatty acid and isoleucine degradation pathways. According to integrative analyses, changes in the expression of lipoxygenase pathway genes, specifically FAD, LOXs, HPLs, and ADHs, probably lead to the difference in strength of "grassy" aroma between both cultivars. The qRT-PCR of 18 aroma-related genes was performed to validate the transcriptome analysis. Our results identified key genes and pathways connected with the biosynthesis of aroma volatiles in white-fleshed pitaya. These results will be useful to dissect the genetic mechanism of fruit aroma in white-fleshed pitaya.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...