Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virol J ; 11: 178, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25293723

RESUMO

Grass carp reovirus (GCRV) is the causative agent of grass carp hemorrhage and causes significant loss of fingerlings. However, little is known about how the virus is distributed in organs and tissues. The aim of the present study was to investigate the distribution of different GCRV stains in tissues and organs of grass carp. The pathogenicity and tissue distribution of GCRV were monitored after intraperitoneal administration. The study showed a distribution of GCRV in different tissues and organs, particularly in the liver, spleen, kidney, intestine, and muscle, which had a higher number of viral RNA copies during the sixth to ninth days. The kidney had the highest numbers of viral RNA copies, as high as 24000 copies. Until the fourteenth day, nearly no viral RNA copies could be detected. This study defined the virus distribution in different tissues of grass carp inoculated by i.p. and supplied clues for the pathogenesis of GCRV.


Assuntos
Carpas/virologia , Doenças dos Peixes/virologia , Infecções por Reoviridae/veterinária , Reoviridae/patogenicidade , Animais , Rim/virologia , Fígado/virologia , Músculos/virologia , Reoviridae/fisiologia , Infecções por Reoviridae/virologia , Baço/virologia , Virulência
2.
Int Immunopharmacol ; 21(2): 432-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24735817

RESUMO

Rabies is a viral infection of the CNS that is almost always fatal once symptoms occur. No effective treatment of the disease is available and novel antiviral strategies are urgently required. Street rabies viruses are field isolates known to be highly neurotropic. Aptamers are single-stranded oligonucleotides that bind their targets with high affinity and specificity and thus have potential for use in diagnostic and therapeutic applications. In this study, we demonstrate that the aptamers FO24 and FO21, which target RABV-infected cells, can significantly protect mice from a lethal dose of the street rabies virus FJ strain in vivo. Groups receiving preexposure prophylaxis had higher survival rates than the groups receiving postexposure prophylaxis. When mice were inoculated with aptamers (4 nmol) for 24h by intracranial or intramuscular injection prior to intramuscular inoculation with the FJ strain, approximately 60% of the mice survived. These results indicate that the FO21 and FO24 aptamers may be used to develop preventative antiviral therapy against rabies disease.


Assuntos
Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Vírus da Raiva/efeitos dos fármacos , Raiva/tratamento farmacológico , Animais , Linhagem Celular , Cricetinae , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Oligonucleotídeos/farmacologia , Taxa de Sobrevida
3.
Virus Res ; 184: 7-13, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24486485

RESUMO

Rabies is a fatal central nervous system (CNS) disease caused by the neurotropic rabies virus (RABV). The therapeutic management of RABV infections is still problematic, and novel antiviral strategies are urgently required. We established the RVG-BHK-21 cell line, which expresses RABV glycoprotein on the cell surface, to select aptamers. Through 28 iterative rounds of selection, single-stranded DNA (ssDNA) aptamers were generated by exponential enrichment (SELEX). A virus titer assay and a real-time quantitative reverse transcription PCR (qRT-PCR) assay revealed that four aptamers could inhibit the replication of RABV in cultured baby hamster kidney (BHK)-21 cells. However, the aptamers did not inhibit the replication of other virus, e.g., canine distemper virus (CDV) and canine parvovirus (CPV). In addition, the GE54 aptamer was found to effectively protect mice against lethal RABV challenge. After inoculation with aptamers for 24h or 48h, followed by inoculation with CVS-11, approximately 25-33% of the mice survived. In summary, we selected aptamers that could significantly protect from a lethal dose of RABV in vitro and in vivo.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Aptâmeros de Nucleotídeos/isolamento & purificação , Aptâmeros de Nucleotídeos/farmacologia , Vírus da Raiva/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Linhagem Celular , Quimioprevenção/métodos , Cricetinae , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos BALB C , Raiva/prevenção & controle , Vírus da Raiva/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Técnica de Seleção de Aptâmeros , Análise de Sobrevida , Carga Viral
4.
Virusdisease ; 25(3): 365-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674605

RESUMO

The matrix protein (M) is one of only five genes in the RV genome and is an important multifunctional protein. Besides to allow for the release of newly replicated virions pairing with G, the M protein also functions in virus replication, pathogenicity, and host cell apoptosis. The goal of present study is to generate recombinant viruses with M gene rearranged, thus laying the foundation for further exploring what will happen when the gene for M is relocated on the RV single-strand RNA. We used rHEP-Flury, an attenuated virus that remains virulent for less than 3 days in sucking mice, to reshuffle the M gene, using an approach that leaves the other viral nucleotide sequence intact. Two viruses with translocated M genes (N1M2 and N1M4) were recovered from each of the rearranged cDNAs, whose gene order is 3'-N-M-P-G-L-5' and 3'-N-P-G-M-L-5' respectively. The growth dynamics of these viruses showed slower replication than the wild-type virus in multiple-step growth curves, but they can grow to a comparable titer in tests of single-step growth curves. Further experimentation with these rearranged viruses will provide insights into the relationships between genome structure and virus phenotypes.

5.
Virus Res ; 173(2): 398-403, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23333291

RESUMO

Rabies is an acute fatal encephalitis disease that affects many warm-blooded mammals. The causative agent of the disease is Rabies virus (RABV). Currently, no approved therapy is available once the clinical signs have appeared. Aptamers, oligonucleotide ligands capable of binding a variety of molecular targets with high affinity and specificity, have recently emerged as promising therapeutic agents. In this study, sixteen high-affinity single-stranded DNA (ssDNA) aptamers were generated by cell-SELEX. Viral titer assays revealed aptamers could specifically inhibit the replication of RABV in cells but did not inhibit the replication of canine distemper virus or canine parvovirus. In addition, the FO21 and FO24 aptamers, with and without PEGylation, were found to effectively protect mice against lethal RABV challenge. When mice were inoculated with aptamers for 24h prior to inoculation with CVS-11, approximately 87.5% of the mice survived. Here, we report aptamers that could significantly protect the mice from a lethal dose of RABV in vitro and in vivo, as demonstrated by the results for survival rate, weight loss and viral titers. These results indicate that FO21 and FO24 aptamers are a promising agent for specific antiviral against RABV infections.


Assuntos
Antivirais/administração & dosagem , Aptâmeros de Nucleotídeos/administração & dosagem , Vírus da Raiva/efeitos dos fármacos , Raiva/prevenção & controle , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Modelos Animais de Doenças , Vírus da Cinomose Canina/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Parvovirus Canino/efeitos dos fármacos , Vírus da Raiva/fisiologia , Análise de Sobrevida , Carga Viral
6.
Virus Res ; 169(1): 169-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22884777

RESUMO

Rabies virus (RABV) infection continues to be a global threat to human and animal health, yet no curative therapy has been developed. RNA interference (RNAi) therapy, which silences expression of specific target genes, represents a promising approach for treating viral infections in mammalian hosts. We designed six small interfering (si)RNAs (N473, N580, N783, N796, N799 and N1227) that target the conserved region of the RABV challenge virus standard (CVS)-11 strain nucleoprotein (N) gene. Using a plasmid-based transient expression model, we demonstrated that N796, N580 and N799 were capable of significantly inhibiting viral replication in vitro and in vivo. These three siRNAs effectively suppressed RABV expression in infected baby hamster kidney-21 (BHK-21) cells, as evidenced by direct immunofluorescence assay, viral titer measurements, real-time PCR, and Western blotting. In addition, liposome-mediated siRNA expression plasmid delivery to RABV-infected mice significantly increased survival, compared to a non-liposome-mediated delivery method. Collectively, our results showed that the three siRNAs, N796, N580 and N799, targeting the N gene could potently inhibit RABV CVS-11 reproduction. These siRNAs have the potential to be developed into new and effective prophylactic anti-RABV drugs.


Assuntos
Antivirais/administração & dosagem , Produtos Biológicos/administração & dosagem , Nucleoproteínas/antagonistas & inibidores , RNA Interferente Pequeno/administração & dosagem , Vírus da Raiva/efeitos dos fármacos , Raiva/tratamento farmacológico , Animais , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Nucleoproteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Vírus da Raiva/genética , Análise de Sobrevida , Resultado do Tratamento
7.
Int Immunopharmacol ; 14(3): 341-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22771543

RESUMO

Aptamers, functional nucleic acids, capable of binding a variety of molecular targets with high affinity and specificity, have emerged as promising therapeutic agents. In this study, the cell surface-systematic evolution of ligands by exponential enrichment (Cell-SELEX) strategy was used to generate DNA aptamers which targeted to the intact rabies virus-infected live cells. Through 35 iterative rounds of selection, five high-affinity single-stranded DNA (ssDNA) aptamers were generated by cell-SELEX. Virus titer assay and real-time quantitative reverse transcription PCR (qRT-PCR) assay revealed that all five aptamers could inhibit replication of rabies virus (RABV) in cultured baby hamster kidney (BHK)-21 cells; and T14 and F34 aptamers were most effective. The qRT-PCR also showed a dose-dependent inhibitory effect in BHK-21 cells. Collectively, these data show the feasibility of generating functionally effective aptamers against rabies virus-infected cells by the Cell-SELEX iterative procedure. These aptamers may prove clinically useful as therapeutic molecules with specific antiviral potential against RABV infections.


Assuntos
Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , DNA de Cadeia Simples , Vírus da Raiva/efeitos dos fármacos , Animais , Linhagem Celular , Cricetinae , Vírus da Raiva/crescimento & desenvolvimento , Técnica de Seleção de Aptâmeros
8.
Bing Du Xue Bao ; 24(5): 401-3, 2008 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19035331

RESUMO

Green fluorescent protein (GFP) gene was inserted into the pseudogene (psi) region of genome of rabies virus rHep-Flury strain, and a recombinant rabies virus carrying GFP, designated as HEP-GFP, was rescued by reverse genetics system. It was demonstrated that green fluorescent protein could be expressed in the chimeric virus after 5 passages in BHK-21 cell line. The research indicated that the pseudogene (psi) region in the genome of rHEP-Flury strain, as an independent functional unit in the process of virus assembly, could independently carry and express exogenous genes.


Assuntos
Proteínas de Fluorescência Verde/genética , Vírus da Raiva/genética , Animais , Linhagem Celular , Cricetinae , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...