Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615704

RESUMO

Viral diseases have caused great economic losses to the aquaculture industry. However, there are currently no specific drugs to treat these diseases. Herein, we utilized Siniperca chuatsi as an experimental model, and successfully extracted two tissue factor pathway inhibitors (TFPIs) that were highly distributed in different tissues. We then designed four novel peptides based on the TFPIs, named TS20, TS25, TS16, and TS30. Among them, TS25 and TS30 showed good biosafety and high antiviral activity. Further studies showed that TS25 and TS30 exerted their antiviral functions by preventing viruses from invading Chinese perch brain (CPB) cells and disrupting Siniperca chuatsi rhabdovirus (SCRV)/Siniperca chuatsi ranairidovirus (SCRIV) viral structures. Additionally, compared with the control group, TS25 and TS30 could significantly reduce the mortality of Siniperca chuatsi, the relative protection rates of TS25 against SCRV and SCRIV were 71.25 % and 53.85 % respectively, and the relative protection rate of TS30 against SCRIV was 69.23 %, indicating that they also had significant antiviral activity in vivo. This study provided an approach for designing peptides with biosafety and antiviral activity based on host proteins, which had potential applications in the prevention and treatment of viral diseases.


Assuntos
Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Rhabdoviridae/fisiologia , Antivirais/farmacologia , Antivirais/química , Percas , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Peptídeos/farmacologia , Peptídeos/química , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/prevenção & controle
2.
Animals (Basel) ; 14(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540055

RESUMO

Aeromonas schubertii is a pathogen that severely affects aquatic animals, including the snakehead, Channa maculata. Lytic bacteriophages have been recognized as effective alternatives to antibiotics for controlling bacterial infections. However, there have been no reports of A. schubertii phages as far as we know. In this study, a lytic bacteriophage SD04, which could effectively infect A. schubertii, was isolated from pond water cultured with diseased snakehead. The SD04 phage formed small, round plaques on Petri dishes. Electron microscopy revealed a hexagonal head and a contractile tail. Based on its morphology, it may belong to the Myoviridae family. Two major protein bands with molecular weights of 50 and 38 kilodaltons were observed after the phage was subjected to SDS-PAGE. The phage showed a large average burst size, high specificity, and a broad host range. When stored at 4 °C, phage SD04 had high stability over 12 months and showed almost no variation within the first six months. All fish were healthy after both intraperitoneal injection and immersion administration of SD04, indicating the safety of the phage. After treatment with SD04, Channa maculata in both phage therapy groups and prevention groups showed high survival rates (i.e., 83.3 ± 3.3% and 100 ± 1.3%, respectively). Phage therapy inhibits bacterial growth in the liver, the target organ of the infected Channa maculat. The experimental results indicate the potential use of phage SD04 for preventing A. schubertii infection in Channa maculata.

3.
Vaccines (Basel) ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543854

RESUMO

BACKGROUND: Vaccinations are still the most effective means of preventing and controlling fish viral diseases, and cells are an important substrate for the production of a viral vaccine. Therefore, the rapid-stable growth and virus sensitivity of cells are urgently needed. METHODS: Chinese perch brain 100th passage (CPB p100) were acclimated in a low serum with 5% FBS L-15 for 50 passages, then transferred to 8% FBS L-15 for 150 passages. Additionally, the morphology and cell type of CPB 300th passage (CPB p300) cells were identified. We analyzed the transfection efficiency and virus sensitivity of CPB p300 cells, and then optimized the conditions of ISKNV, SCRV, and LMBV multiplication in CPB cells. RESULTS: CPB p300 cells were more homogeneous, and the spread diameter (20-30) µm in CPB p300 cells became the dominant population. The doubling time of CPB p300 was 1.5 times shorter than that of CPB p100.However, multiplication rate of CPB p300 was 1.37 times higher than CPB p100. CPB p300 cells were susceptible to ISKNV, SCRV, and LMBV, and the optimal conditions of ISKNV, SCRV, and LMBV multiplication were simultaneous incubation, 0.6 × 105 cells/cm2 and MOI = 0.1; infection at 48 h, 0.8 × 105 cells/cm2 and MOI = 0.01; simultaneous incubation, 0.7 × 105 cells/cm2 and MOI = 0.05, respectively. The time and economic costs of ISKNV, SCRV, and LMBV multiplication in CPB p300 cells were significantly reduced. CONCLUSIONS: The acquisition of CPB p300 cells laid a good material foundation for the production of ISKNV, SCRV, and LMBV vaccines.

4.
Vaccines (Basel) ; 11(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140144

RESUMO

BACKGROUND: Largemouth bass birnavirus (LBBV) disease outbreaks in largemouth bass fingerlings lead to high mortality in China. Therefore, the development of immersion immunization strategies is paramount. METHODS: An avirulent LBBV strain was screened using a fish challenge assay. The proliferation dynamics of the avirulent strain were determined in vitro and in vivo. The efficacy of the avirulent vaccine was evaluated using immune gene expression, viral load, and a virus challenge, and the safety was also assessed using a reversion to virulence test. RESULTS: An avirulent virus strain, designated as largemouth bass birnavirus Guangdong Sanshui (LBBV-GDSS-20180701), was selected from five fish birnavirus isolates. The proliferation peak titer was 109.01 TCID50/mL at 24 hpi in CPB cells and the peak viral load was 2.5 × 104 copies/mg at 4 dpi in the head kidneys and spleens of largemouth bass. The largemouth bass that were immersed within an avirulent vaccine or injected with an inactivated vaccine were protected from the virulent LBBV challenge with a relative percent survival (RPS) of 75% or 42.9%, respectively. The expression levels of IL-12, MHCI, MHCII, CD8, CD4, and IgM in the avirulent group were significantly upregulated at a partial time point compared to the inactivated vaccine group. Moreover, the viral load in the avirulent vaccine group was significantly lower than those in the inactivated vaccine group and control group using real-time PCR. CONCLUSIONS: LBBV-GDSS-20180701 is a potential live vaccine candidate against LBBV disease.

5.
Animals (Basel) ; 13(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003142

RESUMO

Red sea bream (Pagrosomus major) is one of the most popular farmed marine teleost fish species. Fish cell lines are becoming important research tool in the aquaculture field, and they are suitable models to study fish virology, immunology and toxicology. To obtain a Pagrosomus major cell line for biological studies, a continuous cell line from brain of red sea bream (designated as RSBB cell line) was established and has been successfully subcultured over 100 passages. The RSBB cell line predominantly consisted of fibroblast-like cells and multiplied well in M199 medium supplemented with 10% fetal bovine serum at 28 °C. Karyotyping analysis indicated that the modal chromosome numbers of RSBB cells was 48. After transfection with pEGFP-N1, RSBB cells showed bright green fluorescence with a transfection efficiency approaching 8%. For toxicology study, it was demonstrated that metal Cd could induce cytotoxic effects of RSBB cells, accompanied with a dose-dependent MTT conversion capacity. Morphologically, cells treated with metal Cd produced rounding, shrinking and detaching and induced both cell apoptosis and necrosis. For virology study, the RSBB cells were highly susceptible to Nervous necrosis virus (NNV) and Singapore grouper iridovirus (SGIV) with steady titers (i.e., 108.0~8.3 TCID50 mL-1 and 107.0~7.2 TCID50 mL-1 respectively). Furthermore, an obvious cytopathic effect (CPE) could be observed in RSBB cells infected with Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdoviruses (SCRV). Meanwhile, all the infections were confirmed by polymerase chain reaction. The new brain cell line developed and characterized from red sea bream in this study could be used as an in vitro model for fish studies in the fields of toxicology and virology.

6.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37561118

RESUMO

Infectious spleen and kidney necrosis virus disease (ISKNVD) caused significant economic losses to the fishery industry. Epidermal growth factor receptor (EGFR), phosphatidylinositide 3-kinase (PI3K) played an important role in ISKNV invasion. However, the molecular regulatory mechanisms among EGFR, PI3K-Akt, and ISKNV invasion are not clear. In this study, ISKNV infection rapidly induced EGFR activation. While, EGFR activation promoted virus entry, but EGFR inhibitors and specific RNA (siRNA) decreased virus invasion. The PI3K-Akt as downstream signalling of EGFR was activated upon ISKNV infection. Consistent with the trends of EGFR, Akt activation increased ISKNV entry into cells, Akt inhibition by specific inhibitor or siRNA decreased ISKNV invasion. Akt silencing combination with EGFR activation showed that EGFR activation regulation ISKNV invasion is required for activation of the Akt signalling pathway. Those data demonstrated that ISKNV-induced EGFR activation positively regulated virus invasion by PI3K-Akt pathway and provided a better understanding of the mechanism of EGFR-PI3K-Akt involved in ISKNV invasion.


Assuntos
Doenças dos Peixes , Iridoviridae , Animais , Iridoviridae/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Receptores ErbB/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
7.
Front Microbiol ; 14: 1165491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065159

RESUMO

Viruses are non-living organisms that rely on host cellular metabolism to complete their life cycle. Siniperca chuatsi rhabdovirus (SCRV) has caused huge economic losses to the Chinese perch (Siniperca chuatsi) industry worldwide. SCRV replication is dependent on the cellular glutamine metabolism, while aspartate metabolism plays an important role in viral proliferation in glutamine deficiency. Herein, we investigated roles of asparagine metabolism in SCRV proliferation. Results showed that SCRV infection upregulated the expression of key enzymes in the aspartate metabolic pathway in CPB cells. And the key enzymes of malate-aspartic acid shuttle pathway upregulated during the virus invasion phase, and key enzymes of the asparagine biosynthesis pathway upregulated during the viral replication and release phase. When asparagine was added to the depleted medium, the SCRV copy number restored to 90% of those in replete medium, showing that asparagine and glutamine completely rescue the replication of SCRV. Moreover, inhibition of the aspartate- malate shuttle pathway and knockdown of the expression of key enzymes in the asparagine biosynthesis pathway significantly reduced SCRV production, indicating that the aspartic acid metabolic pathway was required to the replication and proliferation of SCRV. Above results provided references for elucidating pathogenic mechanism of SCRV by regulation of aspartate metabolism.

8.
Fish Shellfish Immunol ; 130: 86-92, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055555

RESUMO

The tripartite motif (TRIM) proteins play critical roles in viral infection by modulating innate immunity. However, the molecular and antiviral activity of TRIM59 in mandrain fish is not fully understood. In present study, we cloned and sequenced the TRIM59 core sequence and explored its characteristics in Mandarin fish. The Siniperca chuatsi TRIM59 (scTRIM59) showed relatively high expression in immune-related organs. scTRIM59 expression was significantly down-regulated post ISKNV infection in vivo and vitro, but up-regulated at the early stages of SCRV infection in CPB cells. The overexpression of scTRIM59 inhibited ISKNV and SCRV infection, but decreased the expression of IRF3/IRF7-mediated signal genes. However, knockdown of scTRIM59 promoted the ISKNV and SCRV infection, but increased the expression of IRF3/IRF7-mediated signal genes. Those results indicated that scTRIM59 negatively regulated ISKNV, SCRV infection and IRF3/IRF7-mediated signal genes. This study provided new ideas about the function of scTRIM59.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Perciformes , Animais , Antivirais/farmacologia , Proteínas de Peixes , Peixes/genética
9.
Microbiol Spectr ; 10(2): e0272721, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35286150

RESUMO

p53, as an important tumor suppressor protein, has recently been implicated in host antiviral defense. The present study found that the expression of mandarin fish (Siniperca chuatsi) p53 (Sc-p53) was negatively associated with infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) proliferation as well as the expression of glutaminase 1 (GLS1) and glutaminolysis pathway-related enzymes glutamate dehydrogenase (GDH) and isocitrate dehydrogenase 2 (IDH2). This indicated that Sc-p53 inhibited the replication and proliferation of ISKNV and SCRV by negatively regulating the glutaminolysis pathway. Moreover, it was confirmed that miR145-5p could inhibit c-Myc expression by targeting the 3' untranslated region (UTR). Sc-p53 could bind to the miR145-5p promoter region to promote its expression and to further inhibit the expression of c-Myc. The expression of c-Myc was proved to be positively correlated with the expression of GLS1 as well. All these suggested a negative relationship between the Sc-p53/miR145-5p/c-Myc pathway and GLS1 expression and glutaminolysis. However, it was found that after ISKNV and SCRV infection, the expressions of Sc-p53, miR145-5p, c-Myc, and GLS1 were all significantly upregulated, which did not match the pattern in normal cells. Based on the results, it was suggested that ISKNV and SCRV infection altered the Sc-p53/miR145-5p/c-Myc pathway. All of above results will provide potential targets for the development of new therapeutic strategies against ISKNV and SCRV. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) as major causative agents have caused a serious threat to the mandarin fish farming industry (J.-J. Tao, J.-F. Gui, and Q.-Y. Zhang, Aquaculture 262:1-9, 2007, https://doi.org/10.1016/j.aquaculture.2006.09.030). Viruses have evolved the strategy to shape host-cell metabolism for their replication (S. K. Thaker, J. Ch'ng, and H. R. Christofk, BMC Biol 17:59, 2019, https://doi.org/10.1186/s12915-019-0678-9). Our previous studies showed that ISKNV replication induced glutamine metabolism reprogramming and that glutaminolysis was required for efficient replication of ISKNV and SCRV. In the present study, the mechanistic link between the p53/miR145-5p/c-Myc pathway and glutaminolysis in the Chinese perch brain (CPB) cells was provided, which will provide novel insights into ISKNV and SCRV pathogenesis and antiviral treatment strategies.


Assuntos
Doenças dos Peixes , Iridoviridae , Percas , Rhabdoviridae , Animais , Antivirais , Encéfalo/metabolismo , China , Doenças dos Peixes/genética , Iridoviridae/genética , Iridoviridae/metabolismo , Percas/metabolismo , Rhabdoviridae/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Microbiol Spectr ; 10(2): e0171621, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35319246

RESUMO

Largemouth bass (Micropterus salmoides) is an important and fast-growing aquaculture species in China. In 2017, an epidemic associated with severe mortality occurred in fingerlings of largemouth bass in Guangdong, China. The causative pathogen was identified and named as largemouth bass Birnavirus (LBBV) by virome analysis, viral isolation, electron microscopy, genome sequencing, Western blot, indirect immunofluorescence, experimental challenge, and so on. Virome sequencing results showed that the relative abundance reads related to the family Birnaviridae were the highest, occupied ∼25% of the total viral reads. Electron microscopy revealed large numbers of nonenveloped virus particles in the spleen of diseased fish with a diameter of about 53 nm. LBBV was isolated and propagated in Chinese perch brain cells and induced a typical cytopathic effect. LBBV was stable to chloroform, heat, and 5-bromo-2'-deoxyuridine, but sensitive to acid (pH 3.0). The complete genome of LBBV was comprised of segment A with a size 3525 bp and segment B with a size 2737 bp. Phylogenetic analysis basing on RdRp and VP2 protein sequences revealed that LBBV were clustered into one clade with Lates calcarifer Birnavirus (LCBV), sharing 98.7% or 91.9% sequence identity with LCBV, respectively, but only sharing 59.7% and 52.7% sequence identity with Blosnavirus, suggesting that LBBV and LCBV probably belonged to a new genus. Challenge experiments results indicated that clinical disease symptoms similar to those observed naturally were replicated and the cumulative mortality reached 100% at 3 dpi by i.p. injection. The investigation of prevalence of LBBV infection showed that 41.5% (17/41) sample pools collected from diseased ponds was positive during 2017-2020, indicating that an emerging outbreak of this disease may be spreading within the largemouth bass in China. Above results confirmed that LBBV is a novel Birnavirus associated with massive mortality for fingerlings of largemouth bass. This provides a basis for prevention and control of this emerging viral disease. IMPORTANCE Pathogen isolation and identification are vital for emerging infectious outbreaks. Here we report the isolation, determination and characterization of a novel largemouth bass Birnavirus (LBBV) associated with massive mortality in largemouth bass. And genome of LBBV is determined and analyzed. Based on phylogenetic and alignment analysis of genome, we suggest LBBV belongs to a new genus (designated as Perbirnavirus genus) in Birnaviridae family. Our findings will provide a basis for the further study on prevention and control of this emerging viral disease.


Assuntos
Bass , Doenças dos Peixes , Vírus de RNA , Animais , Aquicultura , Bass/genética , Doenças dos Peixes/epidemiologia , Filogenia , Análise de Sequência de DNA
11.
Microbiol Spectr ; 10(1): e0231021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019690

RESUMO

Under oxidative stress, viruses prefer glycolysis as an ATP source, and glutamine is required as an anaplerotic substrate to replenish the TCA cycle. Infectious spleen and kidney necrosis virus (ISKNV) induces reductive glutamine metabolism in the host cells. Here we report that ISKNV infection the increased NAD+/NADH ratio and the gene expression of glutaminase 1 (GLS1), glutamate dehydrogenase (GDH), and isocitrate dehydrogenase (IDH2) resulted in the phosphorylation and activation of mammalian target of rapamycin (mTOR) in CPB cells. Inhibition of mTOR signaling attenuates ISKNV-induced the upregulation of GLS1, GDH, and IDH2 genes expression, and exhibits significant antiviral activity. Moreover, the expression of silent information regulation 2 homolog 3 (SIRT3) in mRNA level is increased to enhance the reductive glutamine metabolism in ISKNV-infected cells. And those were verified by the expression levels of metabolic genes and the activities of metabolic enzymes in SIRT3-overexpressed or SIRT3-knocked down cells. Remarkably, activation of mTOR signaling upregulates the expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, leading to increased expression of SIRT3 and metabolic genes. These results indicate that mTOR signaling manipulates reductive glutamine metabolism in ISKNV-infected cells through PGC-1α-dependent regulation of SIRT3. Our findings reveal new insights on ISKNV-host interactions and will contribute new cellular targets to antiviral therapy. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of farmed fish disease that has caused huge economic losses in fresh and marine fish aquaculture. The redox state of cells is shaped by virus into a favorable microenvironment for virus replication and proliferation. Our previous study demonstrated that ISKNV replication induced glutamine metabolism reprogramming, and it is necessary for the ISKNV multiplication. In this study, the mechanistic link between the mTOR/PGC-1α/SIRT3 pathway and reductive glutamine metabolism in the ISKNV-infected cells was provided, which will contribute new insights into the pathogenesis of ISKNV and antiviral treatment strategies.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Glutamina/metabolismo , Iridoviridae/fisiologia , Estresse Oxidativo , PPAR gama/metabolismo , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Glutaminase/genética , Glutaminase/metabolismo , Iridoviridae/genética , NAD/metabolismo , PPAR gama/genética , Percas/genética , Percas/metabolismo , Percas/virologia , Fosforilação , Transdução de Sinais , Sirtuína 3/genética , Serina-Treonina Quinases TOR/genética , Replicação Viral
12.
Fish Shellfish Immunol ; 120: 648-657, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968710

RESUMO

The PI3K/AKT/p53 signaling pathway is activated by various types of cellular stimuli or pathogenic infection, and then regulates fundamental cellular functions to combat these stimulations. Here, we studied the meaningful roles of PI3K/AKT/p53 in regulating cellular machine such as autophagy, immune responses, as well as antiviral activity in Chinese perch brain (CPB) cells infected by infectious spleen and kidney necrosis virus (ISKNV), which is an agent caused devastating losses in mandarin fish (Siniperca chuatsi) industry. We found that ISKNV infection induced up-regulation of host PI3K/AKT/p53 axis, but inhibited autophagy in CPB cells. Interestingly, activation of PI3K/AKT/p53 axis factors trough agonists or overexpression dramatically decreased host autophagy level, inhibited ISKNV replication, and elevated the expression of immune-related genes in CPB cells. In contrast, suppression of PI3K/AKT/p53 pathway by inhibitors or small interfering RNA (siRNA)-mediated gene silence increased the autophagy and ISKNV replication, but down-regulated immune responses in CPB cells. All these results indicate that PI3K/AKT/p53 pathway plays an important role in anti-ISKNV infection and can be used as a new target for controlling ISKNV disease.


Assuntos
Autofagia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes , Peixes , Iridoviridae , Animais , Doenças dos Peixes/virologia , Peixes/imunologia , Peixes/virologia , Imunidade , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
13.
Fish Shellfish Immunol ; 120: 686-694, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968711

RESUMO

c-Myc is a transcription factor and master regulator of cellular metabolism, and plays a critical role in virus replication by regulating glutamine metabolism. In this study, the open-reading frame (ORF) of c-Myc, designated as Sc-c-Myc, was cloned and sequenced. Multiple alignment of the amino acid sequence showed that the conserved domain of Sc-c-Myc, including the helix-loop-helix-zipper (bHLHzip) domain and Myc N-terminal region, shared high identities with other homologues from different species. Sc-c-Myc mRNA was widely expressed in the examined tissues of mandarin fish, and the higher mRNA levels was expressed in hind kidney. Moreover, mRNA and protein level of Sc-c-Myc was significantly increased in the Chinese perch brain (CPB) cells and spleen of mandarin fish post infection with infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV). Sc-c-Myc overexpression promoted ISKNV and SCRV replication, on the contrary, knocking down Sc-c-Myc restrained ISKNV and SCRV replication. These results indicated that Sc-c-Myc involved in ISKNV and SCRV replication and proliferation, providing a potential target for the development of new therapic strategy against ISKNV and SCRV.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Perciformes , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Iridoviridae , Perciformes/genética , Perciformes/virologia , RNA Mensageiro , Rhabdoviridae
14.
Vaccines (Basel) ; 9(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34835196

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) resulted in severe systemic diseases with high morbidity and mortality in Siniperca chuatsi. Vaccination is the primary method for effective prevention and control of these diseases. The development of inactivated ISKNV vaccines made some progress, but the technique of quality evaluation is scarce. Herein, a measurement of the MCP (major capsid protein) antigen concentration for the inactivated ISKNV vaccine was developed by double-antibody sandwich ELISA. Firstly, mouse monoclonal antibodies against ISKNV particles and MCP were generated. Then, a double-antibody sandwich ELISA was developed using the monoclonal antibody 1C8 1B9 as the capture antibody and Biotin-3B12 6B3 as the detection antibody. A standard curve was generated using the MCP concentration versus OD value with the linear range of concentration of 4.69~300 ng/mL. The assay sensitivity was 0.9 ng/mL. The antigen content of three batches of inactivated ISKNV vaccines was quantitatively detected using the double-antibody sandwich ELISA. The results showed that MCP antigen contents of inactivated ISKNV vaccines were positively correlated with the viral titers. The newly established double-antibody sandwich ELISA provided a useful tool for the detection of antigen quality for ISKNV inactivated vaccines.

15.
Vaccines (Basel) ; 9(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34579239

RESUMO

Mandarin fish (Siniperca chuatsi) is one of the important cultured fish species in China. Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca Chuatsi rhabdovirus (SCRV) have hindered the development of mandarin fish farming industry. Vaccination is the most effective method for control of viral diseases, however viral vaccine production requires the large-scale culture of cells. Herein, a suspension culture system of Chinese perch brain cell (CPB) was developed on Cytodex 1 microcarrier in a stirred bioreactor. Firstly, CPB cells were cultured using Cytodex 1 microcarrier in 125 mL stirring flasks. With the optimum operational parameters, CPB cells grew well, distributed uniformly, and could fully cover the microcarriers. Then, CPB cells were digested with trypsin and expanded step-by-step with different expansion ratios from the 125 mL stirring bottle to a 500 mL stirring bottle, and finally to a 3-L bioreactor. Results showed that with an expansion ratio of 1:3, we achieved a high cell density level (2.25 × 106 cells/mL) with an efficient use of the microcarriers, which also confirmed the data obtained from the 125 mL stirring flask. Moreover, obvious cytopathic effects (CPE) were observed in the suspended CPB cells post-infection with ISKNV and SCRV. This study provided a large-scale culture system of CPB cells for virus vaccine production.

16.
Fish Shellfish Immunol ; 102: 381-388, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32360913

RESUMO

Autophagy is an important mechanism for organisms to eliminate viruses and other intracellular pathogens. Siniperca chuatsi rhabdovirus (SCRV) is an agent that has caused devastating losses in Chinese perch (Siniperca chuatsi) industry. But the role of autophagy in Siniperca chuatsi rhabdovirus (SCRV) infection is not clearly understood. In this study, we identified that SCRV infection triggered autophagy in CPB cells, which was demonstrated by the appearance of the membrane vesicles, GFP-LC3 punctuate pattern, conversion of LC3-I to LC3-II, and the co-localization of autophagosomes and lysosomes. The changes of autophagy flux in SCRV infection indicated that autophagy was inhibited at the early stage of SCRV infection, but was promoted at the late stage. UV-inactivated SCRV can induce autophagy, suggesting that SCRV replication is not essential for the induction of autophagy. Furthermore, we found inducing autophagy with Rapa inhibited SCRV proliferation, but inhibiting autophagy with 3-MA or CQ increased SCRV production in CPB cells. Then we assessed the effects of PI3K/Akt-mTOR signaling pathway on SCRV induced autophagy. We found that SCRV infection activated PI3K/AKT signaling pathway at 4 hpi, but inhibited it at 8 hpi. SCRV-N mRNA and protein level were decreased by inhibiting PI3K with LY294002, but increased by activating PI3K with 740Y-P. Those results indicated that SCRV infection induced autophagy via the PI3K/Akt-mTOR signal pathway, which will provide new insights into SCRV pathogenesis and antiviral treatment strategies.


Assuntos
Autofagia , Doenças dos Peixes/imunologia , Percas/imunologia , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/fisiologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Infecções por Rhabdoviridae/imunologia
17.
Fish Shellfish Immunol ; 102: 211-217, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32298770

RESUMO

Epidermal growth factor receptor (EGFR) is a tyrosine kinase protein and plays a critical role in virus infection by modulating innate immunity. In this study, we cloned and sequenced the EGFR coding sequence of mandarin fish, designed as scEGFR, and explored its characteristics. scEGFR mRNA was widely expressed in the tested tissues of mandarin fish, and the higher mRNA levels were expressed in kidney and spleen. scEGFR expression was up-regulated in spleen and CPB cells at early stage of ISKNV and SCRV infection. Gefitinib (EGFR inhibitor) inhibited ISKNV and SCRV replication, and increased the expression of the interferon-stimulated genes (ISG). However the EGF (EGFR activator) promoted ISKNV and SCRV replication, and decreased the interferon-stimulated genes. Those results indicated that scEGFR and its signaling involved in ISKNV and SCRV infection, and EGFR activation negatively regulated the interferon response, providing a potential target for the development of new therapic strategy against ISKNV and SCRV.


Assuntos
Receptores ErbB/genética , Receptores ErbB/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Perciformes/genética , Perciformes/imunologia , Animais , Receptores ErbB/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária
18.
Fish Shellfish Immunol ; 98: 429-437, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31988017

RESUMO

Oxyeleotris marmoratus iridovirus (OMIV) and Oxyeleotris marmoratus rhabdovirus (OMRV) are the two major causative agents of disease leading to massive mortality and severe economic losses in marbled sleepy goby (Oxyeleotris marmoratus) industry. It's urgent to develop an effective vaccine against these fatal diseases. In this study, we developed bivalent inactivated vaccine against OMIV and OMRV and evaluated its protective effect in Oxyeleotris marmoratus. The intraperitoneally vaccinated fish were protected against challenge with OMIV and OMRV with both relative percent survival (RPS) of 100%. In addition, deep RNA sequencing was used to analyze the transcriptomic profiles of the spleen tissues at progressive time points post-vaccination with bivalent inactivated vaccine and challenge with OMIV and OMRV infection. Results showed that adaptive immune response was induced in Oxyeleotris marmoratus injected with bivalent inactivated vaccine. Furthermore, robust adaptive immune responses were also detected in vaccinated fish at 7 d and 2 d post-challenge with OMIV and OMRV. Taken together, these results indicated that bivalent inactivated vaccine activated adaptive immune responses in Oxyeleotris marmoratus, and provided protection against OMIV and OMRV lethal challenge.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/prevenção & controle , Iridovirus/imunologia , Perciformes , Rhabdoviridae/imunologia , Vacinas Virais/imunologia , Imunidade Adaptativa , Animais , Infecções por Vírus de DNA/prevenção & controle , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Transcriptoma/imunologia , Vacinas de Produtos Inativados/imunologia
19.
Microb Pathog ; 138: 103822, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31669501

RESUMO

The virus inactivation test is a critical skill in inactivated vaccine production. Active viruses produced viral mRNA in susceptible cells or the host can be used to infer whether a DNA virus is replicating by RT-PCR. But it is generally difficult to avoid genomic DNA contamination in the samples. However, the use of primers spanning an intron is an effective alternative for virus inactivation test. Therein, a nested RT-PCR was developed to detect active ISKNV in the inactivated vaccine. At first, the transcriptome analysis of CPB cell infected with ISKNV revealed several gaps in some viral transcripts compared to ISKNV genome. One intron in ORF003L with 80 bp (designated IN-3) was confirmed by PCR and sequencing analysis. Then, two primer sets (primer A and primer B) spanning the IN-3 intron were designed to detect ISKNV transcription. The nested RT-PCR conditions were optimized with 0.4 µM primer A and 0.2 µM primer B, and 68 °C and 55 °C for annealing temperature, respectively. The sensitivity results indicated that the nested RT-PCR could detect one copy of live ISKNV propagating in CPB cells for seven days. The nested RT-PCR method was more sensitive and accurate than the method of blind passages in cells and fish challenge experiments. Together, above results indicate that this assay is a time-saving, labor-extensive and cost-effective for inactivation test of ISKNV in killed vaccine production.


Assuntos
Doenças dos Peixes/diagnóstico , Doenças dos Peixes/virologia , Íntrons , Iridoviridae/genética , Fases de Leitura Aberta , Animais , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transcriptoma
20.
Biomolecules ; 9(9)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480692

RESUMO

Glucose is a main carbon and energy source for virus proliferation and is usually involved in the glycolysis, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA cycle) pathways. In this study, we investigated the roles of glucose-related metabolic pathways during the replication of infectious spleen and kidney necrosis virus (ISKNV), which has caused serious economic losses in the cultured Chinese perch (Siniperca chuatsi) industry. We found that ISKNV infection enhanced the metabolic pathways of the PPP and the TCA cycle at the early stage of the ISKNV infection cycle and enhanced the glycolysis pathway at the late stage of the ISKNV infection cycle though the comprehensive analysis of transcriptomics, proteomics, and metabolomics. The advanced results proved that ISKNV replication induced upregulation of aerobic glycolysis at the late stage of ISKNV infection cycle and aerobic glycolysis were required for ISKNV multiplication. In addition, the PPP, providing nucleotide biosynthesis, was also required for ISKNV multiplication. However, the TCA cycle involving glucose was not important and necessary for ISKNV multiplication. The results reported here provide new insights into viral pathogenesis mechanism of metabolic shift, as well as antiviral treatment strategies.


Assuntos
Encéfalo/virologia , Infecções por Vírus de DNA/metabolismo , Glucose/metabolismo , Iridoviridae/metabolismo , Via de Pentose Fosfato , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ciclo do Ácido Cítrico , Infecções por Vírus de DNA/patologia , Glicólise , Percas , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...