Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611249

RESUMO

Polylactic acid (PLA) stands out as a biomaterial with immense potential, primarily owing to its innate biodegradability. Conventional methods for manufacturing PLA encompass injection molding or additive manufacturing (AM). Yet, the fabrication of sizable medical devices often necessitates fragmenting them into multiple components for printing, subsequently requiring reassembly to accommodate the constraints posed by the dimensions of the AM platform. Typically, laboratories resort to employing nuts and bolts for the assembly of printed components into expansive medical devices. Nonetheless, this conventional approach of jointing is susceptible to the inherent risk of bolts and nuts loosening or dislodging amid the reciprocating movements inherent to sizable medical apparatus. Hence, investigation into the joining techniques for integrating printed components into expansive medical devices has emerged as a critical focal point within the realm of research. The main objective is to enhance the joint strength of PLA polymer rods using rotary friction welding (RFW). The mean bending strength of welded components, fabricated under seven distinct rotational speeds, surpasses that of the underlying PLA substrate material. The average bending strength improvement rate of welding parts fabricated by RFW with three-stage transformation to 4000 rpm is about 41.94% compared with the average bending strength of PLA base material. The average surface hardness of the weld interface is about 1.25 to 3.80% higher than the average surface hardness of the PLA base material. The average surface hardness of the weld interface performed by RFW with variable rotational speed is higher than the average surface hardness of the weld interface performed at a fixed rotating friction speed. The temperature rise rate and maximum temperature recorded during RFW in the X-axis of the CNC turning machine at the outer edge of the welding part surpassed those observed in the internal temperature of the welding part. Remarkably, the proposed method in this study complies with the Sustainable Development Goals due to its high energy efficiency and low environmental pollution.

2.
Polymers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896320

RESUMO

Polyetheretherketone (PEEK) is a promising biomaterial due to its excellent mechanical properties. Most PPEK manufacturing methods include additive manufacturing, injection molding, grinding, pulse laser drilling, or incremental sheet forming. Rotary friction welding (RFW) is a promising bonding technique in many industries. However, very few studies have focused on the RFW of PEEK. Conventionally, the number of revolutions is fixed during the welding process. Remarkably, the rotary friction welding of PEEK polymer rods using an innovative variable rotational speed is investigated in this study. The average bending strength of the welded part using a three-stage transformation rotational speed was enhanced by about 140% compared with a rotational speed of 1000 rpm. The advantage of computer numerical controlled RFW of PEEK using variable rotational speed is a reduced cycle time of RFW. A reduction in cycle time of about 6% can be obtained using the proposed RFW with a three-stage transformation rotational speed. The innovative approach provides low environmental pollution and high energy efficiency and complies with sustainable development goals.

3.
Polymers (Basel) ; 15(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38231989

RESUMO

Polyether ether ketone (PEEK) is frequently employed in biomedical engineering due to its biocompatibility. Traditionally, PEEK manufacturing methods involve injection molding, compression molding, additive manufacturing, or incremental sheet forming. Few studies have focused on rotational friction welding (RFW) with PEEK plastics. Based on years of RFW practical experience, the mechanical properties of the weldment are related to the burn-off length. However, few studies have focused on this issue. Therefore, the main objective of this study is to assess the effects of burn-off length on the mechanical properties of the welded parts using PEEK polymer rods. The welding pressure can be determined by the rotational speed according to the proposed prediction equation. The burn-off length of 1.6 mm seems to be an optimal burn-off length for RFW. For the rotational speed of 1000 rpm, the average bending strength of the welded parts was increased from 108 MPa to 160 Mpa, when the burn-off length was increased from 1 mm to 1.6 mm and the cycle time of RFW was reduced from 80 s to 76 s. A saving in the cycle time of RFW of about 5% can be obtained. The bending strength of the welded part using laser welding is lower than that using RFW, because only the peripheral material of the PEEK cylinder was melted by the laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...