Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(4): e0509122, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37404157

RESUMO

The coevolution between gut microbiota and the host markedly influences the digestive strategies of animals to cope with changes in food sources. We have explored the compositional structure and seasonal variation in the gut microbiota of François' langur in a limestone forest in Guangxi, southwest China, using 16S rRNA sequencing. Our results demonstrated that Firmicutes and Bacteroidetes were the dominant phyla in langurs, followed by Oscillospiraceae, Christensenellaceae, and Lachnospiraceae at the family level. The top five dominant phyla did not show significant seasonal variations, and only 21 bacterial taxa differed at the family level, indicating stability in gut the microbiota possibly with respect to foraging for several dominant plants and high-leaf feeding by the langurs. Moreover, rainfall and minimum humidity are important factors affecting the gut microbiota of the langurs, but they explain few changes in bacterial taxa. The activity budget and thyroid hormone levels of the langurs did not differ significantly between seasons, indicating that these langurs did not respond to seasonal changes in food by regulating behavior or reducing metabolism. The present study indicates that the gut microbiota's structure is related to digestion and energy absorption of these langurs, providing new perspectives on their adaptation to limestone forests. IMPORTANCE François' langur is a primate that particularly lives in karst regions. The adaptation of wild animals to karst habitats has been a hot topic in behavioral ecology and conservation biology. In this study, gut microbiota, behavior, and thyroid hormone data were integrated to understand the interaction of the langurs and limestone forests from the physiological response, providing basic data for assessing the adaptation of the langurs to the habitats. The responses of the langurs to environmental changes were explored from the seasonal variations in gut microbiota, which would help to further understand the adaptive strategies of species to environmental changes.


Assuntos
Microbioma Gastrointestinal , Presbytini , Animais , Estações do Ano , Carbonato de Cálcio , RNA Ribossômico 16S/genética , China , Florestas
2.
Front Microbiol ; 14: 1126257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860490

RESUMO

The white-headed black langur (Trachypithecus leucocephalus) is exclusively distributed in the karst forests and is critically endangered owing to habitat fragmentation. Gut microbiota can provide physiological data for a comprehensive study of the langur's response to human disturbance in the limestone forest; to date, data on spatial variations in the langurs' gut microbiota are limited. In this study, we examined intersite variations in the gut microbiota of white-headed black langurs in the Guangxi Chongzuo White-headed Langur National Nature Reserve, China. Our results showed that langurs in the Bapen area with a better habitat had higher gut microbiota diversity. In the Bapen group, the Bacteroidetes (13.65% ± 9.73% vs. 4.75% ± 4.70%) and its representative family, Prevotellaceae, were significantly enriched. In the Banli group, higher relative abundance of Firmicutes (86.30% ± 8.60% vs. 78.85% ± 10.35%) than the Bapen group was observed. Oscillospiraceae (16.93% ± 5.39% vs. 16.13% ± 3.16%), Christensenellaceae (15.80% ± 4.59% vs. 11.61% ± 3.60%), and norank_o__Clostridia_UCG-014 (17.43% ± 6.64% vs. 9.78% ± 3.83%) were increased in comparison with the Bapen group. These intersite variations in microbiota diversity and composition could be accounted for by differences in food resources caused by fragmentation. Furthermore, compared with the Banli group, the community assembly of gut microbiota in the Bapen group was influenced by more deterministic factors and had a higher migration rate, but the difference between the two groups was not significant. This might be attributed to the serious fragmentation of the habitats for both groups. Our findings highlight the importance of gut microbiota response for the integrity of wildlife habitats and the need in using physiological indicators to study the mechanisms by which wildlife responds to human disturbances or ecological variations.

3.
Ecol Evol ; 12(7): e9068, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813914

RESUMO

Understanding how animals cope with habitat-specific environmental factors can assist in species conservation management. We studied the habitat use of four groups (two large and two small groups) of white-headed langurs (Trachypithecus leucocephalus) living in the forest of southwest Guangxi, China between September 2016 and February 2017 via instantaneous scan sampling. Our results showed that the langurs primarily used hillsides (55.91% ± 6.47%), followed by cliffs (29.70% ± 5.48%), hilltops (7.26% ± 3.55%), flat zones (6.99% ± 6.58%), and farmlands (0.14% ± 0.28%). The langurs moved most frequently on hillsides (49.35% ± 6.97%) and cliffs (35.60% ± 9.17%). The hillsides were more frequently used (66.94% ± 7.86%) during feeding, and the langurs increased the use of hilltops during the rainy season, and the use of cliffs in the dry season. The langurs frequently rested on hillsides (49.75% ± 8.16%) and cliffs (38.93% ± 8.02%). The larger langur group used cliffs more frequently when moving and resting, whereas the small langur group used hillsides more frequently while resting. Langurs in all groups avoided the flat zones for feeding. Their use of habitat reflected the balancing of foraging needs, thermoregulation, and predator avoidance. We conclude that the ecological factors are determinants of habitat use for white-headed langurs. Our findings suggest that conservation efforts should focus on protecting the vegetation on the hillsides and restoring the vegetation on the flat zones.

4.
Ecol Evol ; 11(21): 14857-14872, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765146

RESUMO

Information on positional behavior contributes to the understanding of the ecological adaptation mechanisms in animals. We collected data on the positional behavior of white-headed langurs (Trachypithecus leucocephalus) at the Guangxi Chongzuo White-Headed Langur National Nature Reserve from September 2016 to August 2017 via instantaneous scan sampling method. This study aimed to examine the importance of positional behavior flexibility in limestone forests characterized by seasonal variations in climate and food resources. Our results indicated that langurs adopted leaping (47.92% ± 5.50%) and vertical climbing (40.13% ± 6.20%) as their predominant locomotor modes and sitting (83.08% ± 4.70%) as their predominant posture. Their positional behavior exhibited marked seasonal variations. More specifically, langurs used quadrupedal walking more frequently during the dry season than during the rainy months. In the stationary state, they sat more frequently during the dry season, whereas they laid and suspended more often during the rainy season. Their positional behavior was affected by fruit availability, day length, and temperature. Quadrupedal walking increased with the decrease in fruit availability, whereas leaping was positively correlated with fruit availability. Moreover, sitting was positively correlated with average temperature but negatively correlated with day length. Lying was also negatively correlated with temperature but positively correlated with day length. We conclude that white-headed langurs adapt to limestone forests with positional behavior flexibility in response to seasonality. Our research provides evidence of the effects of food availability, ambient temperature, and day length on the positional behavior of white-headed langurs, highlighting the need to understand their behavioral ecology and the influence of ecological factors on behavioral adaptation.

5.
Arch Microbiol ; 203(2): 787-798, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33057745

RESUMO

Data on the gut microbiota of animals can provide new insights into dietary ecology of hosts, consequently assisting in understanding their adaptation strategy and evolutionary potential. We studied the gut microbiota composition and function of the wild rhesus macaques (Macaca mulatta) using 16S rRNA sequencing method. Our results revealed that the gut microbiota of the wild rhesus macaques was dominated by Firmicutes, Bacteroidetes, and Spirochaetes. Diversity and richness of gut microbiota were higher during the dry season than the rainy season. Specifically, higher proportions of Firmicutes, Tenericutes, Cyanobacteria, and unclassified bacteria at the phylum level and more Coprococcus at the genus level were detected in the dry season. Predictive functional analysis showed that pathways associated with carbohydrate metabolism and drug resistance (antimicrobial and antineoplastic) were richer in the dry season. These seasonal differences in microbiota could be due to their heavier dependence on leaf-based diet in the dry season. Additionally, macaques in limestone forests had a higher percentage of Spirochaetes, probably suggesting that the proportion of fruits in dietary composition also play an important role in the gut microbiota. We concluded that diet was strongly linked to the diversity, composition, and function of the gut microbiota in the wild groups of rhesus macaques living in the limestone forest, highlighting the importance of diet in the gut microbiota of macaques and the need to conduct further study on the adaptation strategy in response of environmental changes in the ground of gut microbiota.


Assuntos
Biodiversidade , Microbioma Gastrointestinal/genética , Macaca mulatta/microbiologia , Estações do Ano , Animais , Bactérias/classificação , Bactérias/genética , China , Dieta , Florestas , RNA Ribossômico 16S/genética
6.
Microbiologyopen ; 9(3): e981, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31880067

RESUMO

The gut microbiota plays an important role in animal health and is strongly affected by the environment. Captivity and human source food have been shown to influence drastically the gut microbiota composition and function of wild animals. Therefore, in the present study, the gut microbiota of provisioned and wild populations of limestone-living rhesus macaques (Macaca mulatta) were compared using high-throughput 16S rRNA sequencing and bioinformatic analyses. The results indicated that provisioned macaques had a higher microbial richness than wild macaques, but there was no significant difference in the evenness of the gut microbiota between the two populations. Provisioned macaques also showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than wild macaques. Functional analysis revealed that wild macaques had enriched microbial pathways involved in glycan biosynthesis and metabolism, transport and catabolism, and the digestive and endocrine systems, while provisioned macaques were richer in pathways associated with signaling molecules and interaction, neurodegenerative diseases. These differences were likely due to modification of the gut microbiota of the provisioned macaques to enable the digestion of new foods.


Assuntos
Carbonato de Cálcio , Florestas , Microbioma Gastrointestinal , Macaca mulatta , Ração Animal , Animais , Biodiversidade , China , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Metagenômica/métodos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA