Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatobiliary Pancreat Dis Int ; 23(3): 293-299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36690523

RESUMO

BACKGROUND: Acute suppurative terminal cholangitis (ASTC) is rarer than acute obstructive cholangitis and is not well studied. To explore this subtype of acute cholangitis, we described our clinical experience with ASTC. METHODS: We performed a retrospective review of patients with ASTC admitted to our center from September 2014 to August 2020. We analyzed their clinical characteristics, including etiology, clinical manifestations, imaging features, treatment and prognosis. RESULTS: A total of 32 ASTC patients were included in the analysis. The majority of the patients had a history of biliary operations, and clinical manifestations were occult and atypical. The positive rate of bacterial culture was 46.9%. All the patients had typical imaging features on computed tomography and magnetic resonance imaging. Treatment with effective antibiotics was provided as soon as diagnosis was established. After treatment, most patients had a good outcome. Elevated levels of total bilirubin, aspartate aminotransferase, procalcitonin and gamma-glutamyltransferase were the characteristics of critically ill patients and were associated with relatively poor prognosis. CONCLUSIONS: Our results demonstrated that ASTC should be recognized as a new subtype of acute cholangitis, and that earlier diagnosis and more personalized treatments are needed.


Assuntos
Colangite , Humanos , Supuração/complicações , Prognóstico , Colangite/diagnóstico , Colangite/terapia , Hospitalização , Tomografia Computadorizada por Raios X , Doença Aguda , Estudos Retrospectivos
2.
Lab Invest ; 102(12): 1367-1376, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36180571

RESUMO

Ubiquitin-specific protease 3 (USP3), a kind of cysteine protease, is a crucial family member of deubiquitinating enzymes. USP3 is aberrantly expressed in several tumors, which may contribute to cancer progression. However, the role of USP3 in gallbladder cancer (GBC) is still unknown. In the current study, we detected the expression of USP3 in GBC tissues, measured its contribution to the cell proliferation in GBC progression, and further studied the underlying mechanism of USP3 in GBC through pyruvate kinase L/R (PKLR; a kind of glycolytic enzyme). We found that the expression of USP3 in GBC tissues were higher than that of adjacent tissues, and the protein levels of USP3 and PKLR were positively correlated. Additionally, overexpressed USP3 significantly promoted cell proliferation in vitro and tumor growth in vivo, while the silencing of USP3 inhibited proliferation and tumor growth. Glycolysis in GBC cells ws promoted by the USP3 overexpression and inhibited bye USP3 downregulation. Moreover, the loss of USP3 promoted the ubiquitination and weakened the stability of PKLR. Results of the rescue assay confirmed that PKLR knockdown suppressed USP3-induced oncogenic activity in USP3 overexpressed GBC cells. These findings imply that USP3 is an essential positive regulator in GBC progression, and USP3-PKLR plays a vital role in the progression and metabolism of GBC.


Assuntos
Neoplasias da Vesícula Biliar , Humanos , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/patologia , Piruvato Quinase/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Proliferação de Células , Ubiquitinação , Linhagem Celular Tumoral
3.
World J Gastroenterol ; 28(27): 3435-3454, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36158256

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers. AIM: To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways. METHODS: RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC. RESULTS: Compared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/ß-catenin signalling pathway. CONCLUSION: We provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/ß-catenin signalling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , RNA Interferente Pequeno , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases , Repetições WD40 , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
4.
J Cell Physiol ; 236(6): 4313-4329, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33230845

RESUMO

Hepatic stellate cell (HSC) activation plays an important role in the pathogenesis of liver fibrosis, and epithelial-mesenchymal transition (EMT) is suggested to potentially promote HSC activation. Superoxide dismutase 3 (SOD3) is an extracellular antioxidant defense against oxidative damage. Here, we found downregulation of SOD3 in a mouse model of liver fibrosis induced by carbon tetrachloride (CCl4 ). SOD3 deficiency induced spontaneous liver injury and fibrosis with increased collagen deposition, and further aggravated CCl4 -induced liver injury in mice. Depletion of SOD3 enhanced HSC activation marked by increased α-smooth muscle actin and subsequent collagen synthesis primarily collagen type I in vivo, and promoted transforming growth factor-ß1 (TGF-ß1)-induced HSC activation in vitro. SOD3 deficiency accelerated EMT process in the liver and TGF-ß1-induced EMT of AML12 hepatocytes, as evidenced by loss of E-cadherin and gain of N-cadherin and vimentin. Notably, SOD3 expression and its pro-fibrogenic effect were positively associated with sirtuin 1 (SIRT1) expression. SOD3 deficiency inhibited adenosine monophosphate-activated protein kinase (AMPK) signaling to downregulate SIRT1 expression and thus involving in liver fibrosis. Enforced expression of SIRT1 inhibited SOD3 deficiency-induced HSC activation and EMT, whereas depletion of SIRT1 counteracted the inhibitory effect of SOD3 in vitro. These findings demonstrate that SOD3 deficiency contributes to liver fibrogenesis by promoting HSC activation and EMT process, and suggest a possibility that SOD3 may function through modulating SIRT1 via the AMPK pathway in liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Colágeno Tipo I/metabolismo , Transição Epitelial-Mesenquimal , Células Estreladas do Fígado/enzimologia , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Superóxido Dismutase/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Tetracloreto de Carbono , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Estreladas do Fígado/patologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sirtuína 1/metabolismo , Superóxido Dismutase/genética
5.
Oxid Med Cell Longev ; 2018: 9108483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849924

RESUMO

We found better liver graft regeneration with hypothermic machine perfusion (HMP) compared with static cold storage (SCS) for the first time in our pilot study, but the underlying mechanisms are unknown. Upregulated heme oxygenase- (HO-) 1 expression has been reported to play a pivotal role in promoting hepatocyte proliferation. Here, we evaluated the novel role of HO-1 in liver graft protection by HMP. Rats with a heterozygous knockout of HO-1 (HO-1+/-) were generated and subjected to 3 h of SCS or HMP pre-half-size liver transplantation (HSLT) in vivo or 6 h of SCS or HMP in vitro; control rats were subjected to the same conditions (HO-1+/+). We found that HSLT induced significant elevation of the HO-1 protein level in the regenerated liver and that HO-1 haplodeficiency resulted in decreased proliferation post-HSLT. Compared with SCS, HMP induced significant elevation of the HO-1 protein level along with better liver recovery, both of which were reduced by HO-1 haplodeficiency. HO-1 haplodeficiency-induced decreased proliferation was responsible for the attenuated regenerative ability of HMP. Mechanistically, HO-1 haploinsufficiency resulted in suppression of hepatocyte growth factor (HGF)/Akt activity. Our results suggest that inhibition of HO-1 mitigates HMP-induced liver recovery effects related to proliferation, in part, by downregulating the HGF-Akt axis.


Assuntos
Heme Oxigenase-1/genética , Hepatopatias/terapia , Regeneração Hepática/fisiologia , Transplante de Fígado , Animais , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/metabolismo , Fator de Crescimento de Hepatócito/análise , Fator de Crescimento de Hepatócito/metabolismo , Interleucina-6/análise , Fígado/metabolismo , Fígado/patologia , Hepatopatias/patologia , Hepatopatias/veterinária , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais , Transplante Homólogo
6.
Oncotarget ; 9(3): 3303-3320, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423048

RESUMO

Gut microbiota is associated with liver diseases. However, gut microbial characteristics of Budd-Chiari syndrome (B-CS) have not been reported. Here, by MiSeq sequencing, gut microbial alterations were characterized among 37 health controls, 20 liver cirrhosis (LC) patients, 31 initial B-CS patients (B-CS group), 33 stability patients after BCS treatment (stability group) and 23 recurrent patients after BCS treatment (recurrence group). Gut microbial diversity was increased in B-CS versus LC. Bacterial community of B-CS clustered with controls but separated from LC. Operational taxonomic units (OTUs) 421, 502 (Clostridium IV) and 141 (Megasphaera) were unique to B-CS. Genera Escherichia/Shigella and Clostridium XI were decreased in B-CS versus controls. Moreover, nine genera, mainly including Bacteroides and Megamonas, were enriched in B-CS versus LC. Notably, Megamonas could distinguish B-CS from LC with areas under the curve (AUCs) of 0.7904. Microbial function prediction revealed that L-amino acid transport system activity was decreased in B-CS versus both LC and controls. Furthermore, OTUs 27 (Clostridium XI), 137 (Clostridium XIVb) and 40 (Bacteroides) were associated with B-CS stability. Importantly, genus Clostridium XI was enriched in stability group versus both recurrence group and B-CS group. Also, PRPP glutamine biosynthesis was reduced in stability group versus recurrence group, but was enriched in stability group versus B-CS group. In conclusion, specific microbial alterations associated with diagnosis and prognosis were detected in B-CS patients. Correction of gut microbial alterations may be a potential strategy for B-CS prevention and treatment.

7.
World J Gastroenterol ; 23(38): 6995-7008, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29097872

RESUMO

AIM: To investigate the protective mechanism of mitofusin-2 (Mfn2) in rat remote ischemic perconditioning (RIC) models and revalidate it in alpha mouse liver-12 (AML-12) hypoxia cell lines. METHODS: Sprague-Dawley rats were divided into three groups (n = 6 each): sham, orthotopic liver transplantation and RIC. After operation, blood samples were collected to test alanine aminotransferase and aspartate aminotransferase. The liver lobes were harvested for histopathological examination, western blotting (WB) and quantitative real-time (qRT)-PCR. AML-12 cell lines were then subjected to normal culture, anoxic incubator tank culture (hypoxia) and anoxic incubator tank culture with Mfn2 knockdown (hypoxia + Si), and data of qRT-PCR, WB, mitochondrial membrane potential (ΔΨm), apoptosis, endoplasmic reticulum Ca2+ concentrations and mitochondrial Ca2+ concentrations were collected. RESULTS: Both sham and normal culture groups showed no injury during the experiment. The RIC group showed amelioration of liver function compared with the orthotopic liver transplantation group (P < 0.05). qRT-PCR and WB confirmed that Mfn2-mitochondrial Ca2+ uptake 1/2 (MICUs) axis was changed (P < 0.005). In AML-12 cell lines, compared with the hypoxia group, the hypoxia + Si group attenuated the collapse of ΔΨm and apoptosis (P < 0.005). The endoplasmic reticulum Ca2+ decrease and mitochondrial Ca2+ overloading observed in the hypoxia group were also attenuated in the hypoxia + Si group (P < 0.005). Finally, qRT-PCR and WB confirmed the Mfn2-MICUs axis change in all the groups (P < 0.005). CONCLUSION: Mfn2 participates in liver injury in rat RIC models and AML-12 hypoxia cell lines by regulating the MICUs pathway.


Assuntos
Canais de Cálcio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Precondicionamento Isquêmico , Transplante de Fígado , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...