Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27829, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533054

RESUMO

Background: Denglao Qingguan decoction (DLQGD) has been extensively utilized for the treatment of colds, demonstrating significant therapeutic efficacy. Human Coronavirus 229E (HCoV-229E) is considered a crucial etiological agent of influenza. However, the specific impact and underlying mechanisms of DLQGD on HCoV-229E remain poorly understood. Methods: Active ingredients and targets information of DLQGD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), literature search, and Swiss ADEM database. The Genecard database was used to collect HCoV-229E related targets. We built an "ingredient-target network" through Cytoscape. Protein - Protein interaction (PPI) networks were mapped using the String database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were enriched using the DAVID database. Then, we used molecular docking techniques to verify the binding activity between the core compounds and the core gene targets. Finally, in vitro experiments were conducted to validate DLQGD's antiviral activity against HCoV-229E and assess its anti-inflammatory effects. Results: In total, we identified 227 active components in DLQGD. 18 key targets involved in its activity against HCoV-229E. Notably, the core active ingredients including quercetin, luteolin, kaempferol, ß-sitosterol, and apigenin, and the core therapeutic targets were CXCL8, RELA, MAPK14, NFKB1, and CXCL10, all associated with HCoV-229E. KEGG enrichment results included IL-17 signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and so on. The core active ingredients and the core therapeutic targets and Human Aminopeptidase N (ANPEP) all showed good binding activity by molecular docking verification. In vitro, DLQGD exhibited anti-HCoV-229E activity and anti-inflammatory effects. Conclusion: Our study suggests that DLQGD has both effects of anti-HCoV-229E and anti-inflammatory. The core active ingredients (quercetin, luteolin, kaempferol, ß-sitosterol, apigenin) and the core therapeutic targets (CXCL8, RELA, MAPK14, NFKB1, CXCL10) may play key roles in the pharmacological action of DLQGD against HCoV-229E.

2.
Materials (Basel) ; 16(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37512367

RESUMO

In this paper, Ti-27Nb-17Ta-8Zr/HA series composite materials were prepared by spark plasma sintering (SPS) technology. The medical titanium alloy (Ti-27Nb-17Ta-8Zr) with good mechanical properties, wear resistance, and corrosion resistance was combined with the hydroxyapatite (HA) bioactive ceramic with high biological activity and bone-binding ability. Moreover, the density, microstructure evolution, metal/ceramic reaction, mechanical behavior, in vitro bioactivity, and influencing mechanisms of composite materials with different HA contents were studied. The research results indicate that all biological composite materials are composed of ß-Ti solution, α-Ti, and ceramic phases (Ti2O, CaTiO3, CaO, TixPy). With the increase of HA content, the compressive strength and yield strength of the composite material show a trend of first increasing, then decreasing, and then slowly increasing. After soaking in SBF artificial simulated body fluid for 5 days, the deposition of elements such as Ca and P on the surface significantly increased, while elements such as Ti, Nb, Ta, and Zr were evenly distributed in the matrix, demonstrating good in vitro mineralization ability and facilitating the attachment and growth of osteoblasts.

3.
Chemosphere ; 329: 138643, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37031838

RESUMO

Element doping coupled with heterojunction construction and morphology control is an efficient way to improve the properties of photocatalytic materials. Here, a thiourea-modified 2D/2D cobalt-doped (BiO)2CO3/BiOCl heterojunction photocatalyst (denoted as Co-(BC/BL)Tu) was constructed by a simple one-pot hydrothermal method. The photocatalytic property of Co-(BC/BL)Tu product was evaluated by the photocatalytic degradation of tetracycline hydrochloride (TC-HCl). Compared with the pure (BiO)2CO3 sample, the as-prepared Co-(BC/BL)Tu product displayed outstanding visible-light-driven photodegradation property. The photodegradation rate constant k value of the Co-(BC/BL)Tu product was 5.2 times higher than that of pure (BiO)2CO3, which was the result of the synergistic effect of the 2D/2D structure, cobalt doping and type-Ⅱ heterostructures. It could simultaneously boost the visible light harvesting of the photocatalytic system as well as charge separation. This study provides a facile and promising strategy for constructing a high-effective photocatalytic system by combining morphology control engineering, doping engineering, and heterostructure engineering.


Assuntos
Cobalto , Tetraciclina , Luz , Tioureia
4.
Materials (Basel) ; 15(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269135

RESUMO

In this study, the W (10-20%)-Cu composites were simultaneously fabricated using commercial, graded commercial, and graded jet-milled W powder. The results show that the W-Cu composites prepared with the graded jet-milled W powders have the highest density and best comprehensive performance due to the combined effect of the particle gradation and jet-milling treatment. Particle gradation is employed to increase the packing density of powders, thereby increasing the relative density of the compressed W skeleton, and the rounded powder with narrow particle size distribution after jet-milling treatment is used to reduce the enclosed pores formed during the process of compacting and infiltration. W-Cu composites with a high density of 16.25 g/cm3 can be directly obtained by conventional compacting at a low pressure of 300 MPa and following infiltration.

5.
Am J Med Genet A ; 188(1): 58-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34490705

RESUMO

The proband with congenital heart disease and abnormal thumb was clinically diagnosed as Holt-Oram syndrome (HOS). A novel variant, T-box transcription factor 5 (TBX5) c.755 + 1 G > A, was identified in the proband via whole exome sequencing and validated using Sanger sequencing. Pedigree analysis and clinical examinations revealed three/seven individuals over three generations within the family, with features suggestive of HOS. Deep amplicon sequencing confirmed that the allele frequencies of the novel variant in the proband (III-1), her brother (III-2), and her mother (II-2) were 50%, 48.3%, and 38.1%, respectively, indicating that III-1 and III-2 harbored heterozygous variants, while II-2 harbored mosaic heterozygous variants. The minigene splicing assay showed that the novel variant affected the normal splicing of exon 7, resulting in the production of abnormal TBX5 transcripts. Reverse transcription-quantitative polymerase chain reaction and western blot analyses revealed that the novel variant upregulated TBX5 expression at the transcriptional and translational levels. Nuclear localization assay demonstrated impaired nuclear localization of the mutant TBX5. Cell viability assay revealed the inhibition of cell activity by the mutant TBX5. Our findings indicate that the novel variant was potentially induced HOS, probably by causing aberrant splicing, reducing the enrichment of nuclear TBX5 protein, and inhibiting cellular proliferation.


Assuntos
Cardiopatias Congênitas , Comunicação Interatrial , Deformidades Congênitas das Extremidades Inferiores , Deformidades Congênitas das Extremidades Superiores , Anormalidades Múltiplas , Feminino , Cardiopatias Congênitas/diagnóstico , Comunicação Interatrial/genética , Comunicação Interatrial/patologia , Humanos , Deformidades Congênitas das Extremidades Inferiores/genética , Deformidades Congênitas das Extremidades Inferiores/patologia , Masculino , Proteínas com Domínio T/genética , Deformidades Congênitas das Extremidades Superiores/patologia
6.
Nanoscale ; 13(27): 11867-11877, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34190279

RESUMO

Mesocrystals with highly ordered subunits can provide good charge transfer tunnels and more active sites for catalytic reactions. So far, single-component mesocrystals have been well-developed in metals or metal oxides in the past decades, but the construction of mesocrystals in nanocomposites has been a great challenge. Herein we demonstrated a simple, one-pot wet chemical strategy for the preparation of plate-like Ag-Cu2O composited mesocrystals (CMCs) without any organic capping agent, which broke through the traditional dependence on organic capping agents for the synthesis of mesocrystals. As expected, these unprecedented Ag-Cu2O CMCs displayed superior visible-light-driven photodegradation performance toward tetracycline solution compared to the core-shell Ag@Cu2O and pure Cu2O photocatalysts. The improved photocatalytic activity of Ag-Cu2O CMCs could be ascribed to the synergistic effect of an ordered crystallographic orientation, the Schottky barrier and localized surface plasmon resonance (LSPR) for simultaneously enhancing charge separation and transfer as well as visible light harvesting. This research might stimulate in-depth investigations on the exploration of new synthetic methods for the design and construction of novel composited mesocrystals.

7.
Front Cell Infect Microbiol ; 11: 827790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127568

RESUMO

Influenza A virus (IAV) is a major human pathogen associated with significant morbidity and mortality worldwide. Through serial passage in mice, we generated a recombinant pdmH1N1 2009 IAV, A/Guangdong/GLW/2018 (GLW/18-MA), which encodes an mCherry gene fused to the C-terminal of a polymerase acidic (PA) segment and demonstrated comparable growth kinetics to the wild-type. Nine mutations were identified in the GLW/18-MA genome: PA (I61M, E351G, and G631S), NP (E292G), HA1 (T164I), HA2 (N117S and P160S), NA (W61R), and NEP (K44R). The recombinant IAV reporter expresses mCherry, a red fluorescent protein, at a high level and maintains its genetic integrity after five generations of serial passages in Madin-Darby Canine Kidney cells (MDCK) cells. Moreover, the imaging is noninvasive and permits the monitoring of infection in living mice. Treatment with oseltamivir or baicalin followed by infection with the reporter IAV led to a decrease in fluorescent protein signal in living mice. This result demonstrates that the IAV reporter virus is a powerful tool to study viral pathogenicity and transmission and to develop and evaluate novel anti-viral drugs, inhibitors, and vaccines in the future.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Cães , Genes Reporter , Humanos , Vírus da Influenza A/genética , Proteínas Luminescentes , Camundongos , Replicação Viral/genética , Proteína Vermelha Fluorescente
8.
Nanoscale Adv ; 3(16): 4851-4857, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134308

RESUMO

Heterojunction engineering is an effective strategy to enhance the photodegradation activity via improving the spatial charge separation. However, the poor interface interactions and stability limit the photocatalytic activity and stability of traditional heterojunctions. Herein, robust BiOCl/ZnO p-n heterojunctions with semi-coherent interfaces were prepared by a one-pot hydrothermal method to improve the activity and stability toward photocatalytic degradation than that of the counterpart, in which the semi-coherent interfaces exhibited lower phase boundary energy, resulting in highly-stable interfaces between BiOCl and ZnO as well as the formation of the built-in electric field in this robust p-n heterojunction for enhanced charge separation. The cycle test results verified that the BiOCl/ZnO heterojunctions with semi-coherent interfaces can maintain the photocatalytic degradation activity at the initial level even after 10 cycles, while deactivation of the sample without semi-coherent interfaces occurred after 3 cycles only. Optical and electrical properties revealed that BiOCl/ZnO heterojunctions with semi-coherent interfaces possessed the highest electron migration and charge separation efficiency, resulting in the highest photodegradation activity. Density functional theory (DFT) calculations and electron spin-resonance (ESR) results verified that the enhanced charge separation was assigned to the type-II photocatalytic mechanism, leading to the enhancement of ˙OH and ˙O2 - reactive oxygen species. This work would provoke the development of one-step construction of new highly active BiOX (X = Cl, Br, and I)-based heterogeneous photocatalysts with stable semi-coherent interfaces.

9.
Nanoscale ; 12(32): 16657-16677, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32766646

RESUMO

Micro-/nanostructures exposed with special crystallographic planes (surface or crystal facets) exhibit distinctive physicochemical properties because of their unique atomic arrangements, resulting in their widespread applications in the fields of catalysis, energy conversion, sensors, electrical devices and so on. Therefore, tremendous progress has been made in facet-dependent investigation of various micro-/nanocrystals over the past decades. However, a lot of beginners including undergraduate students as well as graduate students lack systematic knowledge and don't know how to identify the Miller indices of a crystallographic plane in the actual research process. So far, to the best of our knowledge, there is no specialized review article in this respect. Herein, we present a tutorial and a comprehensive review on the identification of the Miller indices of a crystallographic plane, including fundamental theory, universal methods based on different case studies, and matters needing attention. Hopefully, this tutorial review will be a beneficial theoretical and practical reference for beginners currently focusing on the controllable preparation and facet-dependent investigation of micro-/nanocrystals.

10.
Nanotechnology ; 31(13): 134002, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783380

RESUMO

Phase separation at nanoscale and highly dispersive nanoparticles were exploited to fabricate a novel type of nanocrystalline W-Cu-Cr-ZrC composite with special hierarchical structure. The microstructures were characterized elaborately and the formation mechanisms of the hierarchical structure were disclosed. It was found that the supersaturated Cr separated from W during sintering and segregated at profuse interfaces. Moreover, Cr can also interact with ZrC nanoparticles dispersed in W matrix, leading to the formation of Zr-Cr-C phase which exerts significant effect on inhibiting coarsening of W grains. On the other side, the dissolution of Cr and W contributes to the formation of Cu nanocrystalline structure. As a result, the prepared W-Cu-Cr-ZrC composite exhibits an ultrahigh hardness of 943HV owing to the synergy of nanocrystalline structure and dispersion strengthening of nanoparticles. The hardness has achieved the highest value among the W-Cu-based composites with the same Cu content reported in literature. This study provided a new strategy for production of high-performance W-Cu-based composites through combination of microstructural design with addition of doping element and nanoparticles.

11.
Nanoscale ; 11(34): 15739-15762, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31433431

RESUMO

Exposed high-index facets with a high density of low-coordinated atoms (including edges, steps and kinks) can provide more high-active sites for chemical reactions. Therefore, great progress has made in the facet-dependent application of various high-index faceted micro-/nanostructures in the past decades. Previous review papers have mainly highlighted the advances in high-index faceted noble metal nanocrystals. However, to date, there is no specialized review paper on high-index faceted metal oxides and their facet-dependent applications. Thus, in this review, the existing high-index faceted metal oxide micro-/nanostructures, including Cu2O, TiO2, Fe2O3, ZnO, SnO2 and BiVO4, are reviewed based on their characterization, synthesis engineering and facet-dependent applications in the fields of catalysis, sensors, lithium-ion batteries and carbon monoxide oxidation. Also, several challenges and perspectives are presented. Hopefully, this review article will be a useful guideline and resource for researchers currently concentrating on high-index faceted metal oxides to design and synthesize novel micro-/nanostructures for overcoming the practical environment-, biology- and energy-related problems.

12.
Chem Asian J ; 14(17): 2912-2924, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31273917

RESUMO

Cu2 O/CuOx (x=0, 1) nanocomposites with well-defined morphologies have been widely applied in catalytic reactions. However, people still understand less about tuning interfacial Cu-O atomic structures for enhanced catalytic applications, and a special review on this topic has not been reported so far. Herein, we summarize our understanding on tuning interfacial Cu-O atomic structures based on the literature, including the formation as well as evolution mechanism of Cu-O interfaces in Cu2 O/CuO and Cu2 O/Cu systems, and the improved performances in the fields of CO oxidation, NOx oxidation, photoelectrocatalysis, water gas shift reaction, photodegradation of organic dyes, hydrogen evolution, and photoreduction of CO2 . Finally, we briefly propose several potential research directions.

13.
Nanoscale Adv ; 1(1): 34-63, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132462

RESUMO

Mesocrystals are a new class of superstructures that are generally made of crystallographically highly ordered nanoparticles and could function as intermediates in a non-classical particle-mediated aggregation process. In the past decades, extensive research interest has been focused on the structural and morphogenetic aspects, as well as the growth mechanisms, of mesocrystals. Unique physicochemical properties including high surface area and ordered porosity provide new opportunities for potential applications. In particular, the oriented interfaces in mesocrystals are considered to be beneficial for effective photogenerated charge transfer, which is a promising photocatalytic candidate for promoting charge carrier separation. Only recently, remarkable advances have been reported with a special focus on TiO2 mesocrystal photocatalysts. However, there is still no comprehensive overview on various mesocrystal photocatalysts and their functional modifications. In this review, different kinds of mesocrystal photocatalysts, such as TiO2 (anatase), TiO2 (rutile), ZnO, CuO, Ta2O5, BiVO4, BaZrO3, SrTiO3, NaTaO3, Nb3O7(OH), In2O3-x (OH) y , and AgIn(WO4)2, are highlighted based on the synthesis engineering, functional modifications (including hybridization and doping), and typical structure-related photocatalytic mechanisms. Several current challenges and crucial issues of mesocrystal-based photocatalysts that need to be addressed in future studies are also given.

14.
J Phys Condens Matter ; 30(17): 175001, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29516872

RESUMO

Using first-principles calculations, we present a potential new way to improve the photocatalytic efficiency of the g-C3N4 sheet by coupling with the g-ZnO sheet to form heterojunction nanostructure followed by the addition of N atom at an atomic level. The result indicates the g-C3N4/g-ZnO heterojunction is a staggered band alignment (type II) structure and a polarized field is generated by the electrons transfer across the interface simultaneously, which facilitate the separation of e--h+ pairs and promote the photocatalytic activity. Furthermore, a great difference in energy levels between redox potentials and band edges of the C3N4/g-ZnO nanocomposite ensures that the water splitting/CO2 reduction reaction is energetically favored. In addition, through the incorporation of nitrogen dopant, the g-C3N4/N-g-ZnO nanocomposite displays desirable properties. The N-derived doping peak causes a decrease of the band gap width of the g-C3N4/g-ZnO nanocomposite, resulting in the enhanced optical absorption from UV into visible light. This theoretical predictions provide insightful outlooks in understanding the effects of interface and doping on the enhanced photocatalytic property of the g-C3N4/g-ZnO nanocomposites, which will assist in engineering highly efficient g-C3N4-based photocatalysts.

15.
Nanotechnology ; 28(47): 475709, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29016362

RESUMO

The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

16.
Nanoscale ; 9(32): 11357-11404, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28776056

RESUMO

As a significant metal chalcogenide, copper sulfide (Cu2-xS, 0 < x < 1), with a unique semiconducting and nontoxic nature, has received significant attention over the past few decades. Extensive investigations have been employed to the various Cu2-xS micro-/nanostructures owing to their excellent optoelectronic behavior, potential thermoelectric properties, and promising biomedical applications. As a result, micro-/nanostructured Cu2-xS with well-controlled morphologies, sizes, crystalline phases, and compositions have been rationally synthesized and applied in the fields of photocatalysis, energy conversion, in vitro biosensing, and in vivo imaging and therapy. However, a comprehensive review on diversified Cu2-xS micro-/nanostructures is still lacking; therefore, there is an imperative need to thoroughly highlight the new advances made in function-directed Cu2-xS-based nanocomposites. In this review, we have summarized the important progress made in the diversified Cu2-xS micro-/nanostructures, including that in the synthetic strategies for the preparation of 0D, 1D, 2D, and 3D micro-/nanostructures (including polyhedral, hierarchical, hollow architectures, and superlattices) and in the development of modified Cu2-xS-based composites for enhanced performance, as well as their various applications. Furthermore, the present issues and promising research directions are briefly discussed.

17.
Nanoscale ; 9(30): 10544-10578, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28726962

RESUMO

Mesoporous micro-/nanostructures acting as supports for catalysts or used directly in catalysis reactions generally show fascinating performances that could lead to great potential for application. In the past few decades, extensive efforts have been devoted to the exploration and enrichment of graphitic carbon nitride (g-C3N4) based research. Especially, mesoporous g-C3N4 (mpg-C3N4) with controllable porosity and electronic/atomic structure can bring to bear unique physicochemical properties and has been widely applied in the fields of photocatalysis, adsorbents, sensors and chemical templates. However, a comprehensive summary on mpg-C3N4 micro/nanostructures is less reported and there is an urgent need to further promote the development of function-oriented mpg-C3N4-based materials. Herein, we will overview the significant advances in functional mpg-C3N4 polymers, including general synthesis strategies and growth mechanisms, modifications of electronic/atomic structures and interfacial properties (such as exfoliation, doping and hybridizing), as well as their current applications. Finally, several emerging issues and perspectives are also proposed.

18.
Bioresour Technol ; 235: 50-58, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28364633

RESUMO

In the present study, a novel ardh gene encoding d-arabitol dehydrogenase (ArDH) was cloned and expressed in Escherichia coli from a new isolated strain of Gluconobacter sp. JX-05. Sequence analysis revealed that ArDH containing a NAD(P)-binding motif and a classical active site motif belongs to the short-chain dehydrogenase family. Subsequently, the optimal pH and temperature, specific activities and kinetic parameter of ArDH were determined. In the co-biotransformation by the whole cells of BL21-ardh and BL21-xdh, 26.1g/L xylitol was produced from 30g/L d-arabitol in 22h with a yield of 0.87g/g. The xylitol production was increased by more than two times as compared with that of Gluconobacter sp. alone, and was improved 10.1% than that of Gluconobacter sp. mixed with BL21-xdh.


Assuntos
Gluconobacter/metabolismo , Xilitol/biossíntese , Biotransformação , D-Xilulose Redutase/genética , Oxirredutases
19.
Phys Chem Chem Phys ; 18(36): 25388-25393, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711444

RESUMO

Using first-principles calculations, we present a multifunctional material of g-C4N3/graphene bilayer with great potentials in the field of spintronics and photocatalysis. In g-C4N3/graphene bilayer, N atoms create localized spin polarization and p-doped graphene shows high charge carrier density, which makes this nanocomposite a perfect candidate for spintronic applications. Meanwhile, the charge redistribution occurred between the two layers also facilitates the separation of photogenerated electron-hole pairs. Moreover, the inclusion of C atoms into g-C3N4 closes the band gap of g-C3N4/graphene completely and induces more levels near the Fermi energy, and thus the g-C4N3/graphene bilayer displays enhanced visible light absorption compared to the g-C3N4/graphene bilayer.

20.
Phys Chem Chem Phys ; 17(36): 23613-8, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26299427

RESUMO

The interfacial effect on the structural, electronic and optical properties of a hybrid triazine-based graphitic carbon nitride and graphene nanocomposite is calculated using the first-principles method. It reveals the favorable stacking pattern utilizing the ab initio thermodynamics approach. The electronic band structure presents that the high carrier mobility is maintained in a hybrid g-CN/G nanocomposite, and a moderate band gap is opened by the interactions between g-C3N4 and graphene. Moreover, the opened band gap can be tuned regularly with the interfacial distance. Based on the analysis of the imaginary part of dielectric function of the graphene, the g-C3N4 monolayer and the hybrid g-CN/G nanocomposite, it is found that the hybrid g-CN/G nanocomposite displays enhanced and extended optical absorption compared to simplex graphene and the g-C3N4 monolayer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...