Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747645

RESUMO

Potassium (K) fertilisation has frequently been shown to enhance plant resistance against pathogens, though the mechanisms remain elusive. This study investigates the interaction dynamics between Nicotiana benthamiana and the pathogen Alternaria longipes under different planta K levels. On the host side, adding K activated the expressions of three NLR (nucleotide-binding domain and leucine-rich repeat-containing proteins) resistance genes, including NbRPM1, NbR1B23 and NbNBS12. Silencing these NLRs attenuated resistance in high-K (HK, 40.8 g/kg) plant, whereas their overexpression strengthened resistance in low-K (LK, 23.9 g/kg) plant. Typically, these NLRs mainly strengthened plant resistance via promoting the expression of pathogenesis-related genes (PRs), ROS burst and synthesis of antifungal metabolites in HK plant. On the pathogen side, the expression of effectors HKCSP1, HKCSP2 and LKCSP were shown to be related to planta K content. A. longipes mainly expressed effectors HKCSP1 and HKCSP2 in HK plant to interfere host resistance. HKCSP1 physically interacted with NbRPM1 to promote the degradation of NbRPM1, then attenuated related resistance in HK N. benthamiana. Meanwhile, HKCSP2 directly interacted with NbPR5 to suppress resistance in HK plant. In LK plant, A. longipes mainly deployed LKCSP that interacted with NbR1B23 to interfere reduce resistance in N. benthamiana. Overall, our research insights that both pathogen and host mobilise distinct strategies to outcompete each other during interactions in different K nutrient environments.

2.
Exp Ther Med ; 27(6): 269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756900

RESUMO

Multiple myeloma (MM) is a plasma cell clonal disease and these plasma cells can survive in the gut. The intestinal microbiota is a complex ecosystem and its dysfunction can release persistent stimulus signals that trigger genetic mutations and clonal evolution in the gut. The present study analyzed the intestinal microbiota in fecal samples of MM patients in high-altitude and cold regions of China using 16s rRNA sequencing and analyzed significantly enriched species at the phylum and genus levels. Although no significant difference in the alpha diversity was observed between the MM and control groups, a significant difference was noted in the beta diversity. A total of 15 significant differential bacteria at the genus level were found between the two groups, among which Bacteroides, Streptococcus, Lactobacillus and Alistipes were significantly enriched in the MM group. The present study also constructed a disease diagnosis model using Random Forest analysis and verified its accuracy using receiver operating characteristic analysis. In addition, using correlation analysis, it demonstrated that the composition of the intestinal microbiota in patients with MM was associated with complement levels. Notably, the present study predicted that the signaling and metabolic pathways of the intestinal microbiota affected MM progression through Kyoto Encyclopedia of Genes and Genomes functional analysis. The present study provides a new approach for the prevention and treatment of MM, in which the intestinal microbiota may become a novel therapeutic target for MM.

3.
Exp Ther Med ; 27(6): 262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756908

RESUMO

Ultraviolet (UV) is divided into UVA (long-wave, 320-400 nm), UVB (middle-wave, 280-320 nm) and UVC (short-wave, 100-280 nm) based on wavelength. UV radiation (UVR) from sunlight (UVA + UVB) is a major cause of skin photodamage including skin inflammation, aging and pigmentation. Accidental exposure to UVC burns the skin and induces skin cancer. In addition to the skin, UV radiation can also impair visual function. Non-coding RNAs (ncRNAs) are a class of functional RNAs that do not have coding activity but can control cellular processes at the post-transcriptional level, including microRNA (miRNA), long non-coding RNA (lncRNA) and circulatory RNA (circRNA). Through a review of the literature, it was determined that UVR can affect the expression of various ncRNAs, and that this regulation may be wavelength specific. Functionally, ncRNAs participate in the regulation of photodamage through various pathways and play pathogenic or protective regulatory roles. In addition, ncRNAs that are upregulated or downregulated by UVR can serve as biomarkers for UV-induced diseases, aiding in diagnosis and prognosis assessment. Therapeutic strategies targeting ncRNAs, including the use of natural drugs and their extracts, have shown protective effects against UV-induced photodamage. In the present review, an extensive summarization of previous studies was performed and the role and mechanism of ncRNAs in UV-induced radiation effects was reviewed to aid in the diagnosis and treatment of UV-related diseases.

4.
Mol Plant Pathol ; 25(4): e13454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619507

RESUMO

Apple Glomerella leaf spot (GLS) is an emerging fungal disease caused by Colletotrichum fructicola and other Colletotrichum species. These species are polyphyletic and it is currently unknown how these pathogens convergently evolved to infect apple. We generated chromosome-level genome assemblies of a GLS-adapted isolate and a non-adapted isolate in C. fructicola using long-read sequencing. Additionally, we resequenced 17 C. fructicola and C. aenigma isolates varying in GLS pathogenicity using short-read sequencing. Genome comparisons revealed a conserved bipartite genome architecture involving minichromosomes (accessory chromosomes) shared by C. fructicola and other closely related species within the C. gloeosporioides species complex. Moreover, two repeat-rich genomic regions (1.61 Mb in total) were specifically conserved among GLS-pathogenic isolates in C. fructicola and C. aenigma. Single-gene deletion of 10 accessory genes within the GLS-specific regions of C. fructicola identified three that were essential for GLS pathogenicity. These genes encoded a putative non-ribosomal peptide synthetase, a flavin-binding monooxygenase and a small protein with unknown function. These results highlight the crucial role accessory genes play in the evolution of Colletotrichum pathogenicity and imply the significance of an unidentified secondary metabolite in GLS pathogenesis.


Assuntos
Colletotrichum , Fabaceae , Malus , Phyllachorales , Colletotrichum/genética , Virulência/genética , Genômica
5.
Int J Biol Macromol ; 261(Pt 1): 129674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280710

RESUMO

The pro-tumorigenic M2-type tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment (TME) promote the progression, angiogenesis, and metastasis of breast cancer. The repolarization of TAMs from an M2-type toward an M1-type holds great potential for the inhibition of breast cancer. Here, we report that Lycium barbarum polysaccharides (LBPs) can significantly reconstruct the TME by modulating the function of TAMs. Specifically, we separated four distinct molecular weight segments of LBPs and compared their repolarization effects on TAMs in TME. The results showed that LBP segments within 50-100 kDa molecular weight range exhibited the prime effect on the macrophage repolarization, augmented phagocytosis effect of the repolarized macrophages on breast cancer cells, and regression of breast tumor in a tumor-bearing mouse model. In addition, RNA-sequencing confirms that this segment of LBP displays an enhanced anti-breast cancer effect through innate immune responses. This study highlights the therapeutic potential of LBP segments within the 50-100 kDa molecular weight range for macrophage repolarization, paving ways to offer new strategies for the treatment of breast cancer.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Neoplasias , Camundongos , Animais , Macrófagos Associados a Tumor , Peso Molecular , Medicamentos de Ervas Chinesas/farmacologia , Macrófagos , Microambiente Tumoral , Neoplasias/patologia
6.
Plant Biotechnol J ; 22(1): 82-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37596985

RESUMO

Colletotrichum fructicola causes a broad range of plant diseases worldwide and secretes many candidate proteinous effectors during infection, but it remains largely unknown regarding their effects in conquering plant immunity. Here, we characterized a novel effector CfEC12 that is required for the virulence of C. fructicola. CfEC12 contains a CFEM domain and is highly expressed during the early stage of host infection. Overexpression of CfEC12 suppressed BAX-triggered cell death, callose deposition and ROS burst in Nicotiana benthamiana. CfEC12 interacted with apple MdNIMIN2, a NIM1-interacting (NIMIN) protein that putatively modulates NPR1 activity in response to SA signal. Transient expression and transgenic analyses showed that MdNIMIN2 was required for apple resistance to C. fructicola infection and rescued the defence reduction in NbNIMIN2-silenced N. benthamiana, supporting a positive role in plant immunity. CfEC12 and MdNPR1 interacted with a common region of MdNIMIN2, indicating that CfEC12 suppresses the interaction between MdNIMIN2 and MdNPR1 by competitive target binding. In sum, we identified a fungal effector that targets the plant salicylic acid defence pathway to promote fungal infection.


Assuntos
Imunidade Vegetal , Fatores de Virulência , Imunidade Vegetal/genética , Virulência , Doenças das Plantas/microbiologia
7.
J Affect Disord ; 347: 210-219, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995925

RESUMO

BACKGROUND: Depression and anxiety in children and adolescents have become one of the major public health threats. This study aimed to provide a comprehensive and accurate understanding of the current status of depression and anxiety in primary and secondary school students in Urumqi and to provide a basis for early intervention in depressed and anxious individuals. METHODS: All primary and secondary school students in 13 schools in the Urumqi S district were surveyed from March 2021 to November 2021, and depression and anxiety were screened using the Self-rating Depression Scale (SDS) and the Self-rating Anxiety Scale (SAS). RESULTS: Overall, 17,086 students participated, with 16,462 valid questionnaires and an effective rate of 96.3%; the numbers of primary, middle, and high school students were 3351, 10,469, and 2642, respectively, with 8493 male students and 7969 female students. The overall depression and anxiety detection rates of primary and secondary school students were 10.74 % and 14.85 %, respectively; the depression detection rates were 5.97 %, 12.05 %, and 11.62 % in elementary, middle, and high schools, respectively=114.8, P < 0.001), while that of anxiety were 9.16 %, 16.75 %, and 14.53 %, respectively (x2=127.5, P < 0.001); the overall depression combined with anxiety detection rate was 8.61 %, and the depression combined with anxiety detection rates in elementary, middle, and high school were 0.95 %, 6.27 %, and 1.39 %, respectively=86.34, P < 0.001). SDS scores in elementary, middle, and high school were (33.21 ± 10.16), (36.66 ± 12.83), and (36.90 ± 11.97), respectively, and SAS scores were (39.64 ± 8.41), (41.88 ± 10.03), (40.71 ± 9.26), respectively. The depression and anxiety scores of primary and secondary school students in Urumqi were lower than those of domestic norm; female students in the middle school group had the highest depression and anxiety scores among all school periods. The SDS and SAS individual scores showed differences in the frequency of specific symptoms and subjective feelings of depression and anxiety among students of different sex and school periods. Depression and anxiety detection rates were highest in secondary school and lowest in primary school; the detection rates of depression and anxiety were significantly higher in female students than in male students. Depression and anxiety scores were significantly lower in the primary school group than in the middle and high school groups, and depression and anxiety levels were significantly higher in female than in male students in each academic period. Female students were 2.045 (95 % confidence interval [CI]: 1.845-2.267) and 2.006 (95 % CI: 1.835-2.193) times more likely to have symptoms of depression and anxiety than male students, respectively. Middle school students were 7.112 (95 % CI: 3.639-13.898) and 5.499 (95 % CI: 3.302-9.155) times and high school students were 7.504(95 % CI: 3.740-15.058) and 5.093 (95 % CI: 2.966-8.744) times more likely to have symptoms of depression and anxiety than elementary school students, respectively. LIMITATIONS: The pandemic may have impacted the results of the study, and this study did not explore the influencing factors of anxiety and depression. CONCLUSION: Depression and anxiety symptoms exist in some primary and secondary school students in S District, Urumqi.


Assuntos
Ansiedade , Depressão , Criança , Adolescente , Humanos , Masculino , Feminino , Estudos Transversais , Depressão/diagnóstico , Depressão/epidemiologia , Ansiedade/diagnóstico , Ansiedade/epidemiologia , Estudantes , Instituições Acadêmicas , Inquéritos e Questionários
8.
Am J Cancer Res ; 13(11): 5684-5697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058840

RESUMO

This study aimed to utilize circulating tumor cell-DNA (CTC-DNA) from liquid biopsies to monitor trastuzumab resistance in Gastric cancer (GC) and assess the limited response rate in HER2 metastatic gastric cancer. Given the heterogeneity of GC, we established a high-precision CTC detection system that effectively isolates tumor cells with high HER2 expression for downstream analysis. Targeted sequencing of 610 genes was conducted on 20 paired CTC and tissue samples to assess uniformity. A longitudinal analysis of CTC samples was then performed to monitor trastuzumab resistance throughout treatment. Targeted sequencing of the HER2 gene showed strong consistency with fluorescence in situ hybridization data. Detected HER2 Scna was superior in predicting tumor shrinkage and progression. Most patients with innate trastuzumab resistance exhibited elevated HER2 Scna levels during progression. PIK3CA mutations were significantly enriched, and ERBB2/4 gene mutations were predominant in patients with innate trastuzumab resistance. CTC-DNA sequencing provides new insights into gene alterations associated with trastuzumab resistance in HER2 mGC.

9.
Int J Biol Macromol ; 253(Pt 5): 127256, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802446

RESUMO

At present, the structure-activity relationship of polysaccharides is a common and important focus in the fields of glycobiology and carbohydrate chemistry. To better understand the effect of specific polysaccharide structures on bioactive orientation, four homogeneous polysaccharides from Lycii fructus, one neutral along with three acidic polysaccharides, were purified, structurally characterized and comparatively evaluated on the antioxidative and anti-aging activities. The GC-MS-based monosaccharide composition analysis and methylation results showed that the LFPs had similar glycosyl types but varied proportions. Nuclear magnetic resonance (NMR) spectroscopy showed that LFPs consisted of arabinogalactan, rhamnogalacturonan and homogalacturonan structural domains. The results of the structure-activity relationship indicated that the antioxidative activity was positively correlated with the galacturonic acid (GalA) content, while the neutral multi-branched chains might be responsible for the anti-aging activity. This study is the first time to compare the principal structures and multiple biological activities of LFPs, which provided a reference for the industrial development and deep excavation of the health value of LFPs.


Assuntos
Medicamentos de Ervas Chinesas , Polissacarídeos , Polissacarídeos/química , Relação Estrutura-Atividade , Frutas/química , Medicamentos de Ervas Chinesas/química , Espectroscopia de Ressonância Magnética , Antioxidantes/farmacologia , Antioxidantes/análise
10.
Eur J Med Chem ; 260: 115768, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683362

RESUMO

Phosphoinositol 3-kinases (PI3Ks) γ and δ are primarily expressed in leukocytes and play crucial roles in regulation of the immune system. Dual inhibition of PI3Kγ/δ has emerged as an effective approach to regulate the tumor microenvironment. Here, we report the exploration of structure-activity relationship optimization which led to the discovery of a potent PI3Kγ/δ dual inhibitor 15u (IHMT-PI3K-455). 15u exhibits strong potency in biochemical and cellular assays and it repolarizes M2 phenotype toward M1 phenotype in THP-1 and BMDM macrophages. In addition, it shows suitable in vivo properties as demonstrated through pharmacokinetic studies in rats and pharmacodynamics properties in a MC38 xenograft model.


Assuntos
Leucócitos , Pirimidinas , Animais , Humanos , Ratos , Modelos Animais de Doenças , Macrófagos , Fenótipo , Pirimidinas/farmacologia
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123249, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579665

RESUMO

Adenosine 5'-triphosphate (ATP) and guanosine 5'-triphosphate (GTP) are the most essential energy source in enormous biological processes. Various probes for ATP or GTP sensing, have been widely established, but the probe that could simultaneously monitor ATP and GTP is still rarely reported. Herein, we report a bipolar hemicyanine cationic probe for simultaneous sensing of ATP and GTP via a one-step monitoring process. This probe exhibited strong affinity to ATP and GTP through intramolecular electrostatic and π-π stacking interactions, which the binding constant on each step were determined as 6.15 × 107 M-1 and 1.57 × 106 M-1 for ATP, 3.19 × 107 M-1 and 3.81 × 106 M-1 for GTP. The sensitivity and specificity of this probe toward ATP or GTP over other twelve biological analogues (adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), guanosine 5'-diphosphate (GDP), guanosine 5'-monophosphate (GMP), Etc.) have also been successfully demonstrated. Furthermore, due to the rapid response rate (within 10 s), we also proved that this probe could be employed as a monitor tool during the ATP or GTP-related enzymatic reaction process.


Assuntos
Trifosfato de Adenosina , Adenosina , Guanosina Trifosfato/metabolismo , Trifosfato de Adenosina/metabolismo , Guanosina Difosfato/metabolismo
12.
Food Funct ; 14(15): 7209-7221, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463025

RESUMO

Premature ovarian insufficiency (POI) has become one of the greatest health threats to the reproduction of women during their fertile age. Lycium barbarum polysaccharides (LBPs) are known for anti-aging and reproductive protective functions. Here, we investigated the protective effect of LBP on POI mice and revealed its possible mechanism by a combination of 16S rRNA sequencing and metabolomics analysis. In the current study, female C57BL/6J mice treated with D-galactose were used as a model to investigate the reversal effect of LBP on the degenerative ovarian function. The ameliorative effect of LBP on POI was evaluated from the estrous cycle, ovarian reserve, serum sex hormone levels, and fertility testing. Additionally, 16S rRNA gene sequencing and untargeted metabolomics were integrated to analyze the effects of LBP on the gut microbiota and fecal metabolic profile in the POI mice. The results showed that LBP administration significantly increased the total number of follicles and the number of follicles at different developmental stages in the POI mice. In addition, LBP was effective in reducing the serum levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), regularizing the disordered estrous cycle, and increasing the number of offspring of the POI mice. The results from 16S rRNA sequencing showed that LBP had beneficial effects on the composition and structure of the gut microbiota in the POI mice. In a metabolomics study, a total of 23 metabolites were finally identified as potential biomarkers of POI, and multiple pathways were regulated after the treatment of LBP, especially the arginine biosynthesis, glycerophospholipid metabolism and steroid hormone biosynthesis pathways. Pearson's correlation analysis showed that the regulation effect of LBP on metabolites was closely related to Faecalibaculum, Bilophila and Anaerofustis in the gut microbiota. In summary, the results demonstrated that LBP could improve the ovarian reserve and provides evidence both on the gut microbiota and metabolism, which provide beneficial support for the applications of LBP in female ovarian function degeneration.


Assuntos
Microbioma Gastrointestinal , Lycium , Insuficiência Ovariana Primária , Humanos , Camundongos , Feminino , Animais , Galactose/farmacologia , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária/tratamento farmacológico , Metaboloma , Lycium/química
13.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2387-2395, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282868

RESUMO

As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Lycium , Lycium/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Relação Estrutura-Atividade , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/química
14.
Phytopathology ; 113(10): 1934-1945, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37141175

RESUMO

Colletotrichum fungi are a group of damaging phytopathogens with atypical mating type loci (harboring only MAT1-2-1 but not MAT1-1-1) and complex sexual behaviors. Sex pheromones and their cognate G-protein-coupled receptors are conserved regulators of fungal mating. These genes, however, lose function frequently among Colletotrichum species, indicating a possibility that pheromone signaling is dispensable for Colletotrichum sexual reproduction. We have identified two putative pheromone-receptor pairs (PPG1:PRE2, PPG2:PRE1) in C. fructicola, a species that exhibits plus-to-minus mating type switching and plus-minus-mediated mating line development. Here, we report the generation and characterization of gene-deletion mutants for all four genes in both plus and minus strain backgrounds. Single-gene deletion of pre1 or pre2 had no effect on sexual development, whereas their double deletion caused self-sterility in both the plus and minus strains. Moreover, double deletion of pre1 and pre2 caused female sterility in plus-minus outcrossing. Double deletion of pre1 and pre2, however, did not inhibit perithecial differentiation or plus-minus-mediated enhancement of perithecial differentiation. Contrary to the results with pre1 and pre2, double deletion of ppg1 and ppg2 had no effect on sexual compatibility, development, or fecundity. We concluded that pre1 and pre2 coordinately regulate C. fructicola mating by recognizing novel signal molecule(s) distinct from canonical Ascomycota pheromones. The contrasting importance between pheromone receptors and their cognate pheromones highlights the complicated nature of sex regulation in Colletotrichum fungi.


Assuntos
Colletotrichum , Receptores de Feromônios , Receptores de Feromônios/genética , Feromônios/genética , Colletotrichum/genética , Doenças das Plantas , Reprodução , Fertilidade , Genes Fúngicos Tipo Acasalamento/genética , Proteínas Fúngicas/genética
15.
Phytopathology ; 113(10): 1985-1993, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37129259

RESUMO

Colletotrichum fructicola is a devastating fungal pathogen of diverse plants. Sexually compatible plus and minus strains occur in the same ascus. However, the differentiation mechanism of plus and minus strains remains poorly understood. Here, we characterized a novel Cys2-His2-containing transcription factor CfCpmd1. The plus CfCpmd1 deletion mutant (Δ+CfCpmd1) resulted in slow hyphal growth and a fluffy cotton-like colony, and the minus deletion mutant (Δ-CfCpmd1) exhibited characters similar to the wild type (WT). Δ+CfCpmd1 led to defective perithecial formation, whereas Δ-CfCpmd1 produced more and smaller perithecia. The normal mating line was developed by pairing cultures of Δ-CfCpmd1 and plus WT, whereas a weak line was observed between Δ+CfCpmd1 and minus WT. Conidial production was completely abolished in both plus and minus mutants. When inoculated on non-wounded apple leaves with mycelial plugs, Δ-CfCpmd1 was nonpathogenic because of failure to develop conidia and appressoria, while Δ+CfCpmd1 could infect apple leaves by appressoria differentiated directly from hyphal tips, even though no conidia formed. Collectively, our results demonstrate that CfCpmd1 of C. fructicola is an important gene related to plus and minus strain differentiation, which also affects hyphal growth, sporulation, appressorium formation, and pathogenicity.


Assuntos
Malus , Phyllachorales , Malus/microbiologia , Virulência , Doenças das Plantas/microbiologia , Desenvolvimento Sexual
16.
Phytopathology ; : PHYTO01230036R, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37069143

RESUMO

Apple Valsa canker (AVC) weakens apple trees and significantly reduces apple production in China and other East Asian countries. Thus far, very few AVC-targeting biocontrol resources have been described. Here, we present a thorough description of a fungal isolate (Chaetomium globosum, 61239) that has strong antagonistic action toward the AVC causal agent Cytospora mali. Potato dextrose broth culture filtrate of strain 61239 completely suppressed the mycelial growth of C. mali on potato dextrose agar, and strongly constrained the development of AVC lesions in in vitro infection assays. ultra-performance liquid chromatography (UPLC) and HPLC-MS/MS investigations supported the conclusion that strain 61239 produces chaetoglobosin A, an antimicrobial metabolite that inhibits C. mali. Using genome sequencing, we discovered a gene cluster in strain 61239 that may be responsible for chaetoglobosin A production. Two of the cluster's genes-cheA, a PKS-NRPS hybrid enzyme, and cheB, an enoyl reductase-were individually silenced, which significantly decreased chaetoglobosin A accumulation as well as the strain's antagonistic activity against C. mali. Together, the findings of our investigation illustrate the potential use of Chaetomium globosum for the management of AVC disease and emphasize the significant contribution of chaetoglobosin A to the antagonistic action of strain 61239.

17.
Plant Physiol ; 192(2): 1396-1419, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36943289

RESUMO

Cytospora canker, caused by Cytospora mali, is the most destructive disease in production of apples (Malus domestica). Adding potassium (K) to apple trees can effectively control this disease. However, the underlying mechanisms of apple resistance to C. mali under high-K (HK) status remain unknown. Here, we found that HK (9.30 g/kg) apple tissues exhibited high disease resistance. The resistance was impeded when blocking K channels, leading to susceptibility even under HK conditions. We detected a suite of resistance events in HK apple tissues, including upregulation of resistance genes, callose deposition, and formation of ligno-suberized tissues. Further multiomics revealed that the phenylpropanoid pathway was reprogrammed by increasing K content from low-K (LK, 4.30 g/kg) status, leading to increases of 18 antifungal chemicals. Among them, the physiological concentration of coumarin (1,2-benzopyrone) became sufficient to inhibit C. mali growth in HK tissues, and exogenous application could improve the C. mali resistance of LK apple branches. Transgenic apple calli overexpressing beta-glucosidase 40 (MdBGLU40), which encodes the enzyme for coumarin synthesis, contained higher levels of coumarin and exhibited high resistance to C. mali even under LK conditions. Conversely, the suppression of MdBGLU40 through RNAi reduced coumarin content and resistance in HK apple calli, supporting the importance of coumarin accumulation in vivo for apple resistance. Moreover, we found that the upregulation of transcription factor MdMYB1r1 directly activated MdBGLU40 and the binding affinity of MdMYB1r1 to the MdBGLU40 promoter increased in HK apple tissue, leading to high levels of coumarin and resistance in HK apple. Overall, we found that the accumulation of defensive metabolites strengthened resistance in apple when raising K from insufficient to optimal status, and these results highlight the optimization of K content in fertilization practices as a disease management strategy.


Assuntos
Ascomicetos , Malus , Malus/metabolismo , Ascomicetos/genética , Potássio/metabolismo , Cumarínicos/metabolismo
18.
Plant Commun ; 4(3): 100505, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36527233

RESUMO

Here we describe a novel narnavirus, Puccinia striiformis virus 5 (PsV5), from the devastating wheat stripe rust fungus P. striiformis f. sp. tritici (Pst). The genome of PsV5 contains two predicted open reading frames (ORFs) that largely overlap on reverse strands: an RNA-dependent RNA polymerase (RdRp) and a reverse-frame ORF (rORF) with unknown function. Protein translations of both ORFs were demonstrated by immune technology. Transgenic wheat lines overexpressing PsV5 (RdRp-rORF), RdRp ORF, or rORF were more susceptible to Pst infection, whereas PsV5-RNA interference (RNAi) lines were more resistant. Overexpression of PsV5 (RdRp-rORF), RdRp ORF, or rORF in Fusarium graminearum also boosted fungal virulence. We thus report a novel ambigrammatic mycovirus that promotes the virulence of its fungal host. The results are a significant addition to our understanding of virosphere diversity and offer insights for sustainable wheat rust disease control.


Assuntos
Basidiomycota , Micovírus , Micovírus/genética , Triticum/microbiologia , Basidiomycota/genética , Puccinia
19.
Mol Biol Rep ; 49(12): 11755-11763, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201101

RESUMO

OBJECTIVE: In addition to diet and metabolism, the occurrence of foam cells and atherosclerosis are also related to environmental factors. Individual studies have shown that ultraviolet B (UVB) can regulate the progression of atherosclerosis, but with different results. Whether or not UVB has a dual effect on atherosclerosis and what mechanism is involved has not been reported. METHODS: After THP-1-derived foam cells were treated with UVB in different ways, the effects of UVB on foam cells were investigated by western blotting, cholesterol efflux experiment, oil red O staining and other methods. RESULTS: UVB plays a dual role on foam cell formation, and this effect is related to cholesterol efflux. UVB of 50 mJ/cm2 can promote cholesterol efflux in foam cells, while UVB of 200 mJ/cm2 can inhibit cholesterol efflux. UVB induces cholesterol efflux from foam cells in an autophagy-dependent manner, as the beneficial effect of UVB at 50 mJ/cm2 can be reversed by the autophagy inhibitor 3-Methyladenine (3-MA). In addition, silencing the expression of ultraviolet radiation resistance-associated gene (UVRAG) can inhibit autophagy and reduce cholesterol efflux, and overexpressing UVRAG yields the opposite result. CONCLUSION: In conclusion, our research proves that UVB exhibits a dual role in foam cell formation by regulating cholesterol efflux. Further more, we also reveal that UVRAG-mediated autophagy is the underlying mechanism of UVB-induced cholesterol efflux.


Assuntos
Aterosclerose , Raios Ultravioleta , Humanos , Colesterol/metabolismo , Células Espumosas , Autofagia/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética
20.
Front Microbiol ; 13: 926724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246248

RESUMO

Pueraria lobata (Willd) (Pueraria montana var. lobata (Willd.) Maesen & S. M. Almeida ex Sanjappa & Predeep) is an important herbal medicine used in many countries. In P. lobata plants showing symptoms of mosaic, yellow spots, and mottling, mixed infection of new viruses provisionally named Pueraria lobata-associated emaravirus (PloAEV, genus Emaravirus), Pueraria lobata-associated crinivirus (PloACV, genus Crinivirus), and isolate CQ of the previously reported kudzu mosaic virus (KuMV-CQ, genus Begomovirus) was confirmed through high-throughput sequencing. PloAEV has five RNA segments, encoding a putative RNA-dependent RNA polymerase, glycoprotein precursor, nucleocapsid protein, movement protein, and P5, respectively. PloACV has two RNA segments, encoding 11 putative proteins. Only PloAEV could be mechanically transmitted from mixed infected symptomatic kudzu to Nicotiana benthamiana plants. All three viruses were detected in 35 symptomatic samples collected from five different growing areas, whereas no viruses were detected in 21 non-symptomatic plants, suggesting a high association between these three viruses. Thus, this study provides new knowledge on the diversity and molecular characteristics of viruses in P. lobata plants affected by the viral disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...