Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769158

RESUMO

Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.

2.
Nat Commun ; 14(1): 4734, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550290

RESUMO

Extracellular vesicles (EVs) are gaining ground as next-generation drug delivery modalities. Genetic fusion of the protein of interest to a scaffold protein with high EV-sorting ability represents a robust cargo loading strategy. To address the paucity of such scaffold proteins, we leverage a simple and reliable assay that can distinguish intravesicular cargo proteins from surface- as well as non-vesicular proteins and compare the EV-sorting potential of 244 candidate proteins. We identify 24 proteins with conserved EV-sorting abilities across five types of producer cells. TSPAN2 and TSPAN3 emerge as lead candidates and outperform the well-studied CD63 scaffold. Importantly, these engineered EVs show promise as delivery vehicles in cell cultures and mice as demonstrated by efficient transfer of luminal cargo proteins as well as surface display of different functional entities. The discovery of these scaffolds provides a platform for EV-based engineering.


Assuntos
Vesículas Extracelulares , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Sistemas de Liberação de Medicamentos , Transporte Proteico , Comunicação Celular
3.
J Extracell Vesicles ; 11(12): e12290, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36463392

RESUMO

Extracellular vesicles (EVs) are promising carriers for the delivery of a variety of chemical and biological drugs. However, their efficacy is limited by the lack of cellular specificity. Available methods to improve the tissue specificity of EVs predominantly rely on surface display of proteins and peptides, largely overlooking the dense glycocalyx that constitutes the outermost layer of EVs. In the present study, we report a reconfigurable glycoengineering strategy that can endogenously display glycans of interest on EV surface. Briefly, EV producer cells are genetically engineered to co-express a glycosylation domain (GD) inserted into the large extracellular loop of CD63 (a well-studied EV scaffold protein) and fucosyltransferase VII (FUT7) or IX (FUT9), so that the engineered EVs display the glycan of interest. Through this strategy, we showcase surface display of two types of glycan ligands, sialyl Lewis X (sLeX) and Lewis X, on EVs and achieve high specificity towards activated endothelial cells and dendritic cells, respectively. Moreover, the endothelial cell-targeting properties of sLeX-EVs were combined with the intrinsic therapeutic effects of mesenchymal stem cells (MSCs), leading to enhanced attenuation of endothelial damage. In summary, this study presents a reconfigurable glycoengineering strategy to produce EVs with strong cellular specificity and highlights the glycocalyx as an exploitable trait for engineering EVs.


Assuntos
Vesículas Extracelulares , Glicocálix , Células Endoteliais , Transporte Proteico , Movimento Celular , Antígeno Sialil Lewis X
4.
J Extracell Vesicles ; 11(7): e12248, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879268

RESUMO

Extracellular vesicles (EVs) have shown promise as potential therapeutics for the treatment of various diseases. However, their rapid clearance after administration could be a limitation in certain therapeutic settings. To solve this, an engineering strategy is employed to decorate albumin onto the surface of the EVs through surface display of albumin binding domains (ABDs). ABDs were either included in the extracellular loops of select EV-enriched tetraspanins (CD63, CD9 and CD81) or directly fused to the extracellular terminal of single transmembrane EV-sorting domains, such as Lamp2B. These engineered EVs exert robust binding capacity to human serum albumins (HSA) in vitro and mouse serum albumins (MSA) after injection in mice. By binding to MSA, circulating time of EVs dramatically increases after different routes of injection in different strains of mice. Moreover, these engineered EVs show considerable lymph node (LN) and solid tumour accumulation, which can be utilized when using EVs for immunomodulation, cancer- and/or immunotherapy. The increased circulation time of EVs may also be important when combined with tissue-specific targeting ligands and could provide significant benefit for their therapeutic use in a variety of disease indications.


Assuntos
Vesículas Extracelulares , Neoplasias , Albuminas/análise , Animais , Tempo de Circulação Sanguínea , Modelos Animais de Doenças , Vesículas Extracelulares/química , Humanos , Linfonodos , Camundongos , Neoplasias/metabolismo , Tetraspaninas/análise
5.
J Extracell Vesicles ; 11(6): e12238, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35716060

RESUMO

Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Vesículas Extracelulares/metabolismo , Congelamento , Humanos , Ácidos Nucleicos/metabolismo , Trealose/metabolismo
6.
Cell Death Differ ; 29(11): 2190-2202, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35534546

RESUMO

The development of chemotherapy resistance is the most vital obstacle to clinical efficacy in gastric cancer (GC). The dysregulation of the Wnt/beta-catenin signaling pathway is critically associated with GC development and chemotherapy resistance. Ferroptosis is a form of regulated cell death, induced by an iron-dependent accumulation of lipid peroxides during chemotherapy. However, whether the Wnt/beta-catenin signaling directly controls resistance to cell death, remains unclear. Here, we show that the activation of the Wnt/beta-catenin signaling attenuates cellular lipid ROS production and subsequently inhibits ferroptosis in GC cells. The beta-catenin/TCF4 transcription complex directly binds to the promoter region of GPX4 and induces its expression, resulting in the suppression of ferroptotic cell death. Concordantly, TCF4 deficiency promotes cisplatin-induced ferroptosis in vitro and in vivo. Thus, we demonstrate that the aberrant activation of the Wnt/beta-catenin signaling confers ferroptosis resistance and suggests a potential therapeutic strategy to enhance chemo-sensitivity for advanced GC patients.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ferroptose/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
7.
Adv Healthc Mater ; 11(5): e2101658, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34773385

RESUMO

Extracellular vesicles (EVs) are nanosized cell-derived vesicles produced by all cells, which provide a route of intercellular communication by transmitting biological cargo. While EVs offer promise as therapeutic agents, the molecular mechanisms of EV biogenesis are not yet fully elucidated, in part due to the concurrence of numerous interwoven pathways which give rise to heterogenous EV populations in vitro. The equilibrium between the EV-producing pathways is heavily influenced by factors in the extracellular environment, in such a way that can be taken advantage of to boost production of engineered EVs. In this study, a quantifiable EV-engineering approach is used to investigate how different cell media conditions alter EV production. The presence of serum, exogenous EVs, and other signaling factors in cell media alters EV production at the physical, molecular, and transcriptional levels. Further, it is demonstrated that the ceramide-dependent EV biogenesis route is the major pathway to production of engineered EVs during optimized EV-production. These findings suggest a novel understanding to the mechanisms underlying EV production in cell culture which can be applied to develop advanced EV production methods.


Assuntos
Vesículas Extracelulares , Comunicação Celular , Vesículas Extracelulares/metabolismo , Organelas , Transdução de Sinais
8.
Front Oncol ; 11: 757497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778074

RESUMO

Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Helicobacter pylori infection can induce GC through a serial cascade of events, with emerging evidence suggesting the important role of epigenetic alterations in the development and progression of the disease. Here, we report on mechanisms responsible for Jumonji AT-rich interactive domain1B (JARID1B) upregulation in GC and its role in the malignant transformation induced by H. pylori infection. We found that upregulation of JARID1B was associated with poorer prognosis, greater tumor purity, and less immune cell infiltration into the tumor. Mechanistically, we showed that the upregulation of JARID1B in human GC was attributed to JARID1B amplification and its induction by H. pylori infection. Furthermore, we identified miR-29c as a negative regulator of JARID1B in GC. H. pylori caused downregulation of miR-29c in human GC and thereby contributed to JARID1B upregulation through relieving posttranscriptional regulation. Functionally, we showed that knockdown of JARID1B reduced GC cell proliferation induced by H. pylori infection. Subsequently, cyclinD1 (CCND1), a key molecule in GC, was shown to be a target gene of JARID1B. In conclusion, these results suggest that JARID1B may be an oncogene upregulated in human GC and could represent a novel therapeutic target to prevent malignant transformation induced by H. pylori infection.

9.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34784299

RESUMO

CPVL (carboxypeptidase, vitellogenic-like) is a serine carboxypeptidase that was first characterized in human macrophages. However, the function of CPVL remains unclear in a variety of tumors. The quantitative PCR (qPCR), Western blotting, and IHC assays were utilized to measure the CPVL expression. CPVL was significantly upregulated in glioma cells and tissues compared with normal cells and tissues, respectively. Moreover, high CPVL expression was correlated with advanced clinical grade and poor prognosis. Silencing of CPVL promoted glioma cell apoptosis, and it inhibited cell proliferation and tumorigenicity in vitro and in vivo. Ingenuity Pathway Analysis (IPA) demonstrated that CPVL silencing activated the IFN-γ/STAT1 signaling pathway, thereby inducing glioma cell apoptosis. Mechanistically, immunopurification, mass spectrometry, IP, and glutathione S-transferase (GST) pull-down experiments elucidated that CPVL physically interacts with Bruton's tyrosine kinase (BTK) and downregulates the STAT1 phosphorylation through promoting p300-mediated STAT1 acetylation. Our findings reveal the crucial role of CPVL in promoting the progression of glioma through suppressing STAT1 phosphorylation. CPVL might serve as a potential prognostic biomarker and therapeutic target for the treatment of glioma.


Assuntos
Carboxipeptidases/metabolismo , Proteína p300 Associada a E1A/metabolismo , Glioma/genética , Fator de Transcrição STAT1/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Glioma/patologia , Humanos
10.
Nat Biomed Eng ; 5(9): 1084-1098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34616047

RESUMO

Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.


Assuntos
Vesículas Extracelulares , Doenças Neuroinflamatórias , Animais , Citocinas , Inflamação , Camundongos , Fator de Necrose Tumoral alfa
11.
J Pathol ; 253(2): 148-159, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33044755

RESUMO

SETDB1 is a histone lysine methyltransferase that has critical roles in cancers. However, its potential role in gastric cancer (GC) remains obscure. Here, we mainly investigate the clinical significance and the possible role of SETDB1 in GC. We find that SETDB1 expression is upregulated in GC tissues and its high-level expression was a predictor of poor prognosis in patients. Overexpression of SETDB1 promoted cell proliferation and metastasis, while SETDB1 suppression had an opposite effect both in vitro and in vivo. Mechanistically, SETDB1 was shown to interact with ERG to promote the transcription of cyclin D1 (CCND1) and matrix metalloproteinase 9 (MMP9) through binding to their promoter regions. In addition, the expression of SETDB1 was also enhanced by the transcription factor TCF4 at the transcriptional level in GC. Furthermore, SETDB1 expression was found to be induced by Helicobacter pylori (H. pylori) infection in a TCF4-dependent manner. Taken together, our results indicate that SETDB1 is aberrantly overexpressed in GC and plays key roles in gastric carcinogenesis and metastasis via upregulation of CCND1 and MMP9. Our work also suggests that SETDB1 could be a potential oncogenic factor and a therapeutic target for GC. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Ciclina D1/metabolismo , Infecções por Helicobacter/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Gástricas/genética , Fator de Transcrição 4/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Progressão da Doença , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Metaloproteinase 9 da Matriz/genética , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Metástase Neoplásica , Regiões Promotoras Genéticas/genética , Estômago/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Fator de Transcrição 4/genética , Regulação para Cima
12.
Mol Cancer Res ; 19(1): 74-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004623

RESUMO

Reactivated telomerase is a crucial event in the development and progression of a variety of tumors. However, how telomerase is activated in gastric carcinogenesis has not been fully uncovered yet. Here, we identified a key role of the NF-κB/LIN28A/let-7a axis to promote human telomerase reverse transcriptase (hTERT) expression for gastric cancer initiation. Mechanistically, LIN28A expression was upregulated by H. pylori-induced NF-κB activation. And LIN28A, in turn, suppressed let-7a expression, forming the NF-κB/LIN28A/let-7a axis to regulate gene expression upon H. pylori infection. Of note, we first discovered hTERT as a direct target of let-7a, which inhibited hTERT expression by binding to its 3'UTR of mRNA. Therefore, H. pylori-triggered let-7a downregulation enhanced hTERT protein translation, resulting in telomerase reactivation. Furthermore, hTERT enhanced LIN28A expression, forming the positive feedback regulation between hTERT and NF-κB/LIN28A/let-7a axis to maintain the sustained overexpression of hTERT in gastric cancer. IMPLICATIONS: The NF-κB/LIN28A/Let-7a axis was crucial for the overexpression of hTERT upon H. pylori infection during gastric cancer development and may serve as a potential target to suppress hTERT expression for gastric cancer prevention and treatment.


Assuntos
Carcinogênese/metabolismo , Helicobacter pylori/patogenicidade , NF-kappa B/metabolismo , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias Gástricas/patologia
13.
J Extracell Vesicles ; 9(1): 1800222, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32944187

RESUMO

Extracellular vesicles (EVs) are naturally occurring nano-sized carriers that are secreted by cells and facilitate cell-to-cell communication by their unique ability to transfer biologically active cargo. Despite the pronounced increase in our understanding of EVs over the last decade, from disease pathophysiology to therapeutic drug delivery, improved molecular tools to track their therapeutic delivery are still needed. Unfortunately, the present catalogue of tools utilised for EV labelling lacks sensitivity or are not sufficiently specific. Here, we have explored the bioluminescent labelling of EVs using different luciferase enzymes tethered to CD63 to achieve a highly sensitive system for in vitro and in vivo tracking of EVs. Using tetraspanin fusions to either NanoLuc or ThermoLuc permits performing highly sensitive in vivo quantification of EVs or real-time imaging, respectively, at low cost and in a semi-high throughput manner. We find that the in vivo distribution pattern of EVs is determined by the route of injection, but that different EV subpopulations display differences in biodistribution patterns. By applying this technology for real-time non-invasive in vivo imaging of EVs, we show that their distribution to different internal organs occurs just minutes after administration.

14.
EBioMedicine ; 53: 102672, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32114387

RESUMO

BACKGROUND: Abnormal expression of the orphan nuclear receptor Nurr1 is a critical factor in the etiology of multiple cancers. However, its potential role in gastric cancer (GC) remains elusive. In this study, we have demonstrated that the expression of Nurr1 was elevated and had an oncogenic function in GC. METHODS: Nurr1 expression was analyzed in clinical specimens and the GEO database. Functions of Nurr1 in GC cells were analyzed using Nurr1 knockdown and overexpression. Various cell and molecular biological methods were used to explore the potential mechanisms of Nurr1 upregulation and its role in promoting GC. FINDINGS: Overexpression of Nurr1 was directly related to the poor prognosis of GC patients. What's more, Nurr1 was induced by Helicobacter pylori (H. pylori) via the PI3K/AKT-Sp1 pathway. Sp1 enhanced Nurr1 expression by binding to its promoter to activate the transcription. Upregulated Nurr1 then directly targeted CDK4 by binding to its promoter region to increase its expression, thereby facilitated GC cells proliferation both in vitro and in vivo. INTERPRETATION: We identified Nurr1 as a driving oncogenic factor in GC. In addition, Nurr1 could be used as a potential therapeutic target for the diagnosis and treatment of H. pylori-associated GC. FUNDING: This work was supported by the National Natural Science Foundation of China (Nos 81801983, 81871620, 81971901, 81772151 and 81571960), and the Department of Science and Technology of Shandong Province (2018CXGC1208).


Assuntos
Carcinogênese/genética , Quinase 4 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição Sp1/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Ativação Transcricional , Regulação para Cima
15.
EBioMedicine ; 47: 44-57, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31409573

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide. Patients with poorly differentiated OSCC often exhibit a poor prognosis. AUNIP (Aurora Kinase A and Ninein Interacting Protein), also known as AIBp, plays a key role in cell cycle and DNA damage repair. However, the function of AUNIP in OSCC remains elusive. METHODS: The differentially expressed genes (DEGs) were obtained using R language. Receiver operating characteristic curve analysis was performed to identify diagnostic markers for OSCC. The effectiveness of AUNIP in diagnosing OSCC was evaluated by machine learning. AUNIP expression was analyzed in publicly available databases and clinical specimens. Bioinformatics analysis and in vitro experiments were conducted to explore biological functions and prognostic value of AUNIP in OSCC. FINDINGS: The gene integration analysis revealed 90 upregulated DEGs. One candidate biomarker, AUNIP, for the diagnosis of OSCC was detected, and its expression gradually increased along with malignant differentiation of OSCC. Bioinformatics analysis demonstrated that AUNIP could be associated with tumor microenvironment, human papillomavirus infection, and cell cycle in OSCC. The suppression of AUNIP inhibited OSCC cell proliferation and resulted in G0/G1 phase arrest in OSCC cells. The survival analysis showed that AUNIP overexpression predicted poor prognosis of OSCC patients. INTERPRETATION: AUNIP could serve as a candidate diagnostic and prognostic biomarker for OSCC and suppression of AUNIP may be a potential approach to preventing and treating OSCC. FUND: Taishan Scholars Project in Shandong Province (ts201511106) and the National Natural Science Foundation of China (Nos. 61603218).


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Proteínas de Ligação a DNA/genética , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Adulto , Idoso , Carcinoma de Células Escamosas/mortalidade , Ciclo Celular/genética , Linhagem Celular Tumoral , Biologia Computacional , Bases de Dados Genéticas , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Prognóstico , Curva ROC , Análise de Sobrevida , Transcriptoma
16.
Cancer Med ; 8(8): 3965-3980, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31145543

RESUMO

Gastric cancer (GC) is one of the most common and malignant pathologies, and a significant portion of GC incidences develops from Helicobacter pylori (Hp)-induced chronic gastritis. Although the exact mechanisms of GC are complex and poorly understood, gastric carcinogenesis is a good model to investigate how inflammation and infection collaboratively promote tumorigenesis. Yes-associated protein 1 (YAP1) is the key effector of the Hippo pathway, which is silenced in most human cancers. Herein, we verified the tumor-promoting effect of YAP1 in vitro, in vivo, and in human specimens. We revealed that YAP1 displays nuclear translocation and works with TEAD to activate transcription of the crucial inflammatory cytokine IL-1ß in gastric cells infected with Hp. As IL-1ß accounts for inflammation-associated tumorigenesis, this process can lead to gastric carcinogenesis. Thus, in addition to activating proliferation genes, YAP1 also plays a major role in inflammation amplification by activating inflammatory cytokine genes. Excitingly, our research demonstrates that transfection of mutant plasmid YAP-5SA/S94A or addition of the drug verteporfin, both of which are thought to disrupt the YAP1-TEAD interaction, can arrest the carcinogenesis process. These findings can provide new approaches to GC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori/fisiologia , Interleucina-1beta/genética , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Infecções por Helicobacter/microbiologia , Xenoenxertos , Humanos , Masculino , Camundongos , Modelos Biológicos , Transporte Proteico , Neoplasias Gástricas/patologia , Proteínas de Sinalização YAP
17.
EBioMedicine ; 39: 301-314, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30502053

RESUMO

BACKGROUND: Rhythm abnormalities are crucial for diverse diseases. However, their role in disease progression induced by Helicobacter pylori (H. pylori) remains elusive. METHODS: H. pylori infection was used in in vivo and in vitro experiments to examine its effect on rhythmic genes. The GEO database was used to screen H. pylori affecting rhythm genes, and the effect of rhythm genes on inflammatory factors. Chromatin immunoprecipitation and dual luciferase assays were used to further find out the regulation between molecules. Animal models were used to confirm the relationship between rhythm genes and H. pylori-induced inflammation. FINDINGS: BMAL1 disorders aggravate inflammation induced by H. pylori. Specifically, H. pylori induce BMAL1 expression in vitro and in vivo through transcriptional activation of LIN28A, breaking the circadian rhythm. Mechanistically, LIN28A binds to the promoter region of BMAL1 and directly activates its transcription under H. pylori infection. BMAL1 in turn functions as a transcription factor and enhances the expression of proinflammatory cytokine TNF-α, thereby promoting inflammation. Of note, BMAL1 dysfunction in the rhythm disorder animal model aggravates inflammatory response induced by H. pylori infection in vivo. INTERPRETATION: These findings in this study imply the pathogenic relationship between BMAL1 and H. pylori. BMAL1 may serve as a potential diagnostic marker and therapeutic target for the early diagnosis and treatment of diseases related to H. pylori infection. FUND: National Natural Science Foundation of China.


Assuntos
Fatores de Transcrição ARNTL/genética , Gastrite/microbiologia , Infecções por Helicobacter/genética , Helicobacter pylori/patogenicidade , Proteínas de Ligação a RNA/genética , Fator de Necrose Tumoral alfa/genética , Animais , Linhagem Celular , Ritmo Circadiano , Modelos Animais de Doenças , Feminino , Gastrite/genética , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas , Ativação Transcricional
18.
EBioMedicine ; 38: 69-78, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30449701

RESUMO

BACKGROUND: Histones chaperones have been found to play critical roles in tumor development and progression. However, the role of histone chaperone CHAF1A in gastric carcinogenesis and its underlying mechanisms remain elusive. METHODS: CHAF1A expression in gastric cancer (GC) was analyzed in GEO datasets and clinical specimens. CHAF1A knockdown and overexpression were used to explore its functions in gastric cancer cells. The regulation and potential molecular mechanism of CHAF1A expression in gastric cancer cells were studied by using cell and molecular biological methods. FINDINGS: CHAF1A was upregulated in GC tissues and its high expression predicted poor prognosis in GC patients. Overexpression of CHAF1A promoted gastric cancer cell proliferation both in vitro and in vivo, whereas CHAF1A suppression exhibited the opposite effects. Mechanistically, CHAF1A acted as a co-activator in the Wnt pathway. CHAF1A directly interacted with TCF4 to enhance the expression of c-MYC and CCND1 through binding to their promoter regions. In addition, the overexpression of CHAF1A was modulated by specificity protein 1 (Sp1) in GC. Sp1 transcriptionally enhanced the expression of CHAF1A in GC. Furthermore, CHAF1A expression induced by Helicobacter pylori was Sp1 dependent. INTERPRETATION: CHAF1A is a potential oncogene in GC, and may serve as a novel therapeutic target for GC treatment.


Assuntos
Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/metabolismo , Fator de Transcrição 4/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Fator de Transcrição Sp1/metabolismo , Neoplasias Gástricas/patologia
19.
Front Immunol ; 9: 1326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951064

RESUMO

Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell's activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.

20.
EBioMedicine ; 21: 104-116, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28625518

RESUMO

Epigenetic mechanisms play a key role in gastrointestinal cancer (GIC) development and progression, and most studies have been focused on aberrant DNA methylation and histone modifying enzymes. However, the histone H3-H4 chaperone ASF1A is an important factor regulating chromatin assembling and gene transcription, while it is currently unclear whether ASF1A is involved in cancer pathogenesis. The present study is thus designed to address this issue. Here we showed that ASF1A expression was widespread in GIC-derived cell lines and up-regulated in primary GIC. Higher levels of ASF1A expression predicted significantly shorter patient overall survival in colorectal cancer (P=0.0012). The further analyses of the GEO dataset validate higher ASF1A expression as a prognostic factor for CRC patients. Mechanistically, ASF1A interacted with ß-catenin and promoted the transcription of ß-catenin target genes including c-MYC, cyclin D1, ZEB1 and LGR5, thereby stimulating proliferation, stemness and migration/invasion of GIC cells. ß-Catenin inhibition abolished these effects of ASF1A. Moreover, the ASF1A-ß-catenin-ZEB1 axis down-regulated E-Cadherin expression, thereby contributing to enhanced migration/invasion of GIC cells. ASF1A over-expression and depletion facilitated and inhibited in vivo tumor growth and/or metastasis in mouse xenograft models, respectively. Taken together, ASF1A is aberrantly over-expressed in GIC tumors and plays key roles in GIC development and progression by stimulating the transcription of ß-catenin target genes. ASF1A may thus be a novel target for GIC therapy and a potential prognostic marker.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/mortalidade , Expressão Gênica , Animais , Biomarcadores Tumorais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Genes myc , Xenoenxertos , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Imuno-Histoquímica , Chaperonas Moleculares , Prognóstico , Regiões Promotoras Genéticas , Análise de Sobrevida , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...