Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolism ; 64(12): 1682-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26455966

RESUMO

OBJECTIVE: Evidence shows that both macrophage migration inhibitory factor (MIF) and GLUT4 glucose transporter are involved in diabetic cardiomyopathy (DCM), but it remains largely unknown whether and how MIF regulates GLUT4 expression in cardiomyocytes. The present study aims to investigate the mechanism underlying the modulation of GLUT4 by MIF in cardiomyocytes. MATERIAL AND METHODS: Activations of AKT and AMPK signaling, and expressions of MIF, GLUT4 and the candidate GLUT4 regulation associated transcription factors in the diabetic mouse myocardium were determined. The screened transcription factors mediating MIF-promoted GLUT4 expression were verified by RNA interference (RNAi) and electrophoretic mobility shift assay (EMSA), respectively. RESULTS: MIF was increased, but GLUT4 was decreased in the diabetic mouse myocardium. MIF could enhance glucose uptake and up-regulate GLUT4 expression in NMVCs. Expressions of transcription factor MEF2A, -2C, -2D and Zac1 were significantly up-regulated in MIF-treated neonatal mouse ventricular cardiomyocytes (NMVCs), and markedly reduced in the diabetic myocardium. Knockdown of MEF2A, -2C, -2D and Zac1 could significantly inhibit glucose uptake and GLUT4 expression in cardiomyocytes. Moreover, EMSA results revealed that transcriptional activities of MEF2 and Zac1 were significantly increased in MIF-treated NMVCs. AMPK signaling was activated in MIF-stimulated NMVCs, and AMPK activator AICAR could enhance MEF2A, -2C, -2D, Zac1 and GLUT4 expression. Additionally, MIF effects were inhibited by an AMPK inhibitor compound C and siRNA targeting MIF receptor CD74, suggesting the involvement of CD74-dependent AMPK activation. CONCLUSIONS: Transcription factor MEF2 and Zac1 mediate MIF-induced GLUT4 expression through CD74-dependent AMPK activation in cardiomyocytes.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Genes Supressores de Tumor/fisiologia , Transportador de Glucose Tipo 4/genética , Oxirredutases Intramoleculares/fisiologia , Fatores de Transcrição MEF2/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Antígenos de Diferenciação de Linfócitos B/fisiologia , Células Cultivadas , Cardiomiopatias Diabéticas/fisiopatologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Insulina/fisiologia , Função Ventricular Esquerda
2.
J Cell Mol Med ; 19(3): 608-19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583328

RESUMO

Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy.


Assuntos
Cardiomegalia/genética , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Ciclinas/metabolismo , MicroRNAs/genética , Animais , Aorta Abdominal/cirurgia , Linhagem Celular , Ciclina D1/biossíntese , Ciclina D2/biossíntese , Ciclinas/biossíntese , Modelos Animais de Doenças , Ativação Enzimática , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Miócitos Cardíacos/patologia , Fenilefrina/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-myc , Ratos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição STAT3/metabolismo
3.
Mol Cell Biochem ; 397(1-2): 7-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25060909

RESUMO

The beneficial effects of mesenchymal stem cells (MSCs) in cardiac cell therapy are greatly limited due to poor survival after transplantation into ischemic hearts. Here, we investigated whether caspase 8 small hairpin RNA (shRNA) modification enhance human MSCs (hMSCs) survival and improve infarcted heart function. Recombinant adenovirus encoding pre-miRNA-155-designed caspase 8 shRNA was prepared to inhibit caspase 8 expression in hMSCs. The effect of caspase 8 shRNA modification on protecting hMSCs from apoptosis under the conditions of serum deprivation and hypoxia was tested by Annexin V/PI staining and caspase 8 activity assay. The caspase 8 shRNA-modified and superparamagnetic iron oxide (SPIO)-labeled hMSCs were injected into the border zone of the infarcted region of rat heart. Echocardiography and Masson trichrome staining were performed to assess heart function and cardiac fibrosis. Our results showed that adenovirus-mediated caspase 8 shRNA could efficiently inhibit caspase 8 expression in hMSCs. Knock-down of caspase 8 expression lead to inhibition of hMSCs apoptosis, reduction of caspase 8 activity and up-regulations of HGF, IGF-1 and Bcl-2. Transplantation of caspase 8 shRNA-modified hMSCs could significantly improve infracted heart function, attenuate cardiac fibrosis. Consistently, the rate of cardiomyocyte apoptosis and caspase 8 activity were significantly decreased, and the survival rate of transplanted hMSCs was markedly elevated in the myocardium receiving caspase 8 shRNA-modified hMSCs transplantation. Together, our findings implicated the therapeutic potential of caspase 8 shRNA-modified hMSCs in improving the infarcted heart function.


Assuntos
Adenoviridae , Caspase 8 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/enzimologia , MicroRNAs , Infarto do Miocárdio/terapia , Adulto , Animais , Apoptose/genética , Caspase 8/biossíntese , Caspase 8/genética , Feminino , Técnicas de Silenciamento de Genes/métodos , Humanos , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA