Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Mater Today Bio ; 28: 101197, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221211

RESUMO

Tissue engineering offers a promising alternative for oral and maxillofacial tissue defect rehabilitation; however, cells within a sizeable engineered tissue construct after transplantation inevitably face prolonged and severe hypoxic conditions, which may compromise the survivability of the transplanted cells and arouse the concern of anaerobic infection. Microalgae, which can convert carbon dioxide and water into oxygen and glucose through photosynthesis, have been studied as a source of oxygen supply for several biomedical applications, but their promise in orofacial tissue regeneration remains unexplored. Here, we demonstrated that through photosynthetic oxygenation, Chlamydomonas reinhardtii (C. reinhardtii) supported dental pulp stem cell (DPSC) energy production and survival under hypoxia. We developed a multifunctional photosynthetic hydrogel by embedding DPSCs and C. reinhardtii encapsulated alginate microspheres (CAMs) within gelatin methacryloyl hydrogel (GelMA) (CAMs@GelMA). This CAMs@GelMA hydrogel can generate a sustainable and sufficient oxygen supply, reverse intracellular hypoxic status, and enhance the metabolic activity and viability of DPSCs. Furthermore, the CAMs@GelMA hydrogel exhibited selective antibacterial activity against oral anaerobes and remarkable antibiofilm effects on multispecies biofilms by disrupting the hypoxic microenvironment and increasing reactive oxygen species generation. Our work presents an innovative photosynthetic strategy for oral tissue engineering and opens new avenues for addressing other hypoxia-related challenges.

2.
Health Inf Sci Syst ; 12(1): 48, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39282612

RESUMO

Objective: The study aims to identify distinct population-specific comorbidity progression patterns, timely detect potential comorbidities, and gain better understanding of the progression of comorbid conditions among patients. Methods: This work presents a comorbidity progression analysis framework that utilizes temporal comorbidity networks (TCN) for patient stratification and comorbidity prediction. We propose a TCN construction approach that utilizes longitudinal, temporal diagnosis data of patients to construct their TCN. Subsequently, we employ the TCN for patient stratification by conducting preliminary analysis, and typical prescription analysis to uncover potential comorbidity progression patterns in different patient groups. Finally, we propose an innovative comorbidity prediction method by utilizing the distance-matched temporal comorbidity network (TCN-DM). This method identifies similar patients with disease prevalence and disease transition patterns and combines their diagnosis information with that of the current patient to predict potential comorbidity at the patient's next visit. Results: This study validated the capability of the framework using a real-world dataset MIMIC-III, with heart failure (HF) as interested disease to investigate comorbidity progression in HF patients. With TCN, this study can identify four significant distinctive HF subgroups, revealing the progression of comorbidities in patients. Furthermore, compared to other methods, TCN-DM demonstrated better predictive performance with F1-Score values ranging from 0.454 to 0.612, showcasing its superiority. Conclusions: This study can identify comorbidity patterns for individuals and population, and offer promising prediction for future comorbidity developments in patients.

3.
Pharmacol Res ; 208: 107384, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39209083

RESUMO

Energy metabolism disorder, mainly exhibiting the inhibition of fatty acid degradation and lipid accumulation, is highly related with aging acceleration. However, the intervention measures are deficient. Here, we reported Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs), especially EPA, exerted beneficial effects on maintaining energy metabolism and lipid homeostasis to slow organ aging. As the endogenous agonist of peroxisome proliferator-activated receptor α (PPARα), Omega-3 PUFAs significantly boosted fatty acid ß-oxidation and ATP production in multiple aged organs. Consequently, Omega-3 PUFAs effectively inhibited age-related pathological changes, preserved organ function, and retarded aging process. The beneficial effects of Omega-3 PUFAs were also testified in mfat-1 transgenic mice, which spontaneously generate abundant endogenous Omega-3 PUFAs. In conclusion, our study innovatively demonstrated Omega-3 PUFAs administration in diet slow aging through promoting energy metabolism. The supplement of Omega-3 PUFAs or fat-1 transgene provides a promising therapeutic approach to promote healthy aging in the elderly.


Assuntos
Envelhecimento , Metabolismo Energético , Ácidos Graxos Ômega-3 , Camundongos Transgênicos , PPAR alfa , Animais , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , PPAR alfa/metabolismo , PPAR alfa/genética , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Humanos
4.
Metabolism ; 159: 155978, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097161

RESUMO

AIMS: Renal fibrosis is a common feature in various chronic kidney diseases (CKD). Tubular cell damage is a main characterization which results from dysregulated fatty acid oxidation (FAO) and lipid accumulation. Cannabinoid Receptor 2 (CB2) contributes to renal fibrosis, however, its role in FAO dysregulation in tubular cells is not clarified. In this study, we found CB2 plays a detrimental role in lipid metabolism in tubular cells. METHODS: CB2 knockout mice were adopted to establish a folic acid-induced nephropathy (FAN) model. CB2-induced FAO dysfunction, lipid deposition, and fibrogenesis were assessed in vivo and vitro. To explore molecular mechanisms, ß-catenin inhibitors and peroxisome proliferator-activated receptor alpha (PPARα) activators were also used in CB2-overexpressed cells. The mediative role of ß-catenin in CB2-inhibited PPARα and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) activation was analyzed. RESULTS: CB2 activates ß-catenin signaling, resulting in the suppression of PPARα/PGC-1α axis. This decreased FAO functions and led to lipid droplet formation in tubular cells. CB2 gene ablation effectively mitigated FAO dysfunction, lipid deposition and uremic toxins accumulation in FAN mice, consequently retarding renal fibrosis. Additionally, inhibition to ß-catenin or PPARα activation could greatly inhibit lipid accumulation and fibrogenesis induced by CB2. CONCLUSIONS: This study highlights CB2 disrupts FAO in tubular cells through ß-catenin activation and subsequent inhibition on PPARα/PGC-1α activity. Targeted inhibition on CB2 offers a perspective therapeutic strategy to fight against renal fibrosis.


Assuntos
Fibrose , Túbulos Renais , Metabolismo dos Lipídeos , PPAR alfa , Receptor CB2 de Canabinoide , Animais , Masculino , Camundongos , beta Catenina/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/etiologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , PPAR alfa/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética
5.
Dent Mater ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174419

RESUMO

OBJECTIVES: Mechanical debridement supplemented with antibacterial agents effectively eradicates subgingival biofilms formed in the periodontal pockets of severe periodontitis patients. However, the available antimicrobial agents have limited penetrating ability to kill the bacteria encased in the deep layers of biofilms. This study aimed to fabricate a novel magnetic nanoparticle (MNP) loaded with rhamnolipid (RL) and vancomycin (Vanc, Vanc/RL-Ag@Fe3O4) to combat subgingival biofilms. METHODS: The multispecies subgingival biofilm was formed by periodontal pathogens, including Streptococcus oralis (S. oralis), Streptococcus sanguinis (S. sanguinis), Actinomyces naeslundii (A. naeslundii), Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). Scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM), and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the anti-biofilm efficacy of Vanc/RL-Ag@Fe3O4 with or without a magnetic field on multispecies subgingival biofilms. RESULTS: The minimal inhibitory concentration (MIC) values of Vanc/RL-Ag@Fe3O4 on S. oralis, S. sanguinis, A. naeslundii, P. gingivalis, and F. nucleatum were 25, 50, 100, 50, and 25 µg/mL, respectively. Vanc/RL-Ag@Fe3O4 (200 µg/mL) reduced the 7-d biofilm thickness from 22 to 13 µm by degrading extracellular polymeric substance (EPS) and killing most bacteria except for tolerant F. nucleatum. A magnetic field enhanced the anti-biofilm effect of Vanc/RL-Ag@Fe3O4 by facilitating its penetration into the bottom layers of biofilms and killing tolerant F. nucleatum. SIGNIFICANCE: Vanc/RL-Ag@Fe3O4 MNPs can release RL, Vanc, and Ag and eradicate subgingival biofilms by disrupting EPS and killing bacteria. Vanc/RL-Ag@Fe3O4 combined with a magnetic force is a promising approach for combating periodontal infection.

6.
Oncogene ; 43(38): 2868-2884, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154122

RESUMO

The dysregulation of long non-coding RNAs (lncRNAs) are involved in regulating tumor progression in multiple manner. However, little is known about whether lncRNA is involved in the translation regulation of proteins. Here, we identified that the suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR) was highly expressed in nasopharyngeal carcinoma (NPC) tissues by analyzing the lncRNA microarray. Clinically, the high expression of SIMALR served as an independent predictor for inferior prognosis in NPC patients. SIMALR functioned as an oncogenic lncRNA that promoted the proliferation and metastasis of NPC cells in vitro and in vivo. Mechanistically, SIMALR served as a critical accelerator of protein synthesis by binding to eEF1A2 (eukaryotic translation elongation factor 1 alpha 2), one of the most crucial regulators in the translation machinery of the eukaryotic cells, and enhancing its endogenous GTPase activity. Furthermore, SIMALR mediated the activation of eEF1A2 phosphorylation to accelerate the translation of ITGB4/ITGA6, ultimately promoting the malignant phenotype of NPC cells. In addition, N-acetyltransferase 10 (NAT10) enhanced the stability of SIMALR and caused its overexpression in NPC through the N4-acetylcytidine (ac4C) modification. In sum, our results illustrate SIMALR functions as an accelerator for protein translation and highlight the oncogenic role of NAT10-SIMALR-eEF1A2-ITGB4/6 axis in NPC.


Assuntos
Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Fator 1 de Elongação de Peptídeos , RNA Longo não Codificante , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Animais , Camundongos , Proliferação de Células/genética , Linhagem Celular Tumoral , Biossíntese de Proteínas , Feminino , Masculino , Prognóstico , Camundongos Nus
7.
Health Inf Sci Syst ; 12(1): 37, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38974364

RESUMO

Obtaining high-quality data sets from raw data is a key step before data exploration and analysis. Nowadays, in the medical domain, a large amount of data is in need of quality improvement before being used to analyze the health condition of patients. There have been many researches in data extraction, data cleaning and data imputation, respectively. However, there are seldom frameworks integrating with these three techniques, making the dataset suffer in accuracy, consistency and integrity. In this paper, a multi-source heterogeneous data enhancement framework based on a lakehouse MHDP is proposed, which includes three steps of data extraction, data cleaning and data imputation. In the data extraction step, a data fusion technique is offered to handle multi-modal and multi-source heterogeneous data. In the data cleaning step, we propose HoloCleanX, which provides a convenient interactive procedure. In the data imputation step, multiple imputation (MI) and the SOTA algorithm SAITS, are applied for different situations. We evaluate our framework via three tasks: clustering, classification and strategy prediction. The experimental results prove the effectiveness of our data enhancement framework.

8.
Biomaterials ; 311: 122695, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38954960

RESUMO

Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Imunoterapia , Proteínas de Membrana , Estruturas Metalorgânicas , Animais , Imunoterapia/métodos , Ciclo-Oxigenase 2/metabolismo , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Camundongos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Feminino , Microambiente Tumoral/efeitos dos fármacos
9.
Int J Psychol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993167

RESUMO

Left-behind children, as a large-scale disadvantaged group, encounter an array of risk factors that impede their academic development because of parental migration. The current study aimed at investigating the roles of left-behind cumulative risk and growth mindset on academic adjustment and exploring whether growth mindset moderated the association between left-behind cumulative risk and academic adjustment in left-behind middle school students. A total of 1184 left-behind middle school students (615 males; 12-16 years) participated in the study. Results indicated that left-behind cumulative risk is negatively associated with academic adjustment in middle school students (ß = -.199, t(1183) = -7.229, p < .001). Besides, growth mindset has a protective effect on left-behind middle school students' academic adjustment (ß = .386, t(1183) = 14.070, p < .001) and a moderating effect on the relationship between left-behind cumulative risk and academic adjustment (ß = .394, t(1182) = 4.057, p < .001, ΔR2 = .012). These findings suggest that family risk factors related to left-behind status affect the academic adjustment of left-behind middle school students in a superposition way, while the positive individual factor of growth mindset could protect the negative impact caused by parental migration.

10.
Adv Sci (Weinh) ; : e2402284, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994917

RESUMO

Although messenger RNA translation is tightly regulated to preserve protein synthesis and cellular homeostasis, chronic exposure to interferon-γ (IFN-γ) in several cancers can lead to tryptophan (Trp) shortage via the indoleamine-2,3-dioxygenase (IDO)- kynurenine pathway and therefore promotes the production of aberrant peptides by ribosomal frameshifting and tryptophan-to-phenylalanine (W>F) codon reassignment events (substitutants) specifically at Trp codons. However, the effect of Trp depletion on the generation of aberrant peptides by ribosomal mistranslation in gastric cancer (GC) is still obscure. Here, it is shows that the abundant infiltrating lymphocytes in EBV-positive GC continuously secreted IFN-γ, upregulated IDO1 expression, leading to Trp shortage and the induction of W>F substitutants. Intriguingly, the production of W>F substitutants in EBV-positive GC is linked to antigen presentation and the activation of the mTOR/eIF4E signaling pathway. Inhibiting either the mTOR/eIF4E pathway or EIF4E expression counteracted the production and antigen presentation of W>F substitutants. Thus, the mTOR/eIF4E pathway exposed the vulnerability of gastric cancer by accelerating the production of aberrant peptides and boosting immune activation through W>F substitutant events. This work proposes that EBV-positive GC patients with mTOR/eIF4E hyperactivation may benefit from anti-tumor immunotherapy.

11.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906860

RESUMO

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Assuntos
Docetaxel , Resistencia a Medicamentos Antineoplásicos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Piroptose , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Gasderminas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Piroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38824941

RESUMO

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Anticorpos Monoclonais Humanizados , Quimiorradioterapia , Quimioterapia de Indução , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/tratamento farmacológico , Adulto , China/epidemiologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/terapia , Quimiorradioterapia/métodos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Idoso , Cisplatino/uso terapêutico , Cisplatino/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/administração & dosagem , Adulto Jovem , Adolescente , Intervalo Livre de Progressão
13.
Drug Resist Updat ; 76: 101111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908233

RESUMO

Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.


Assuntos
RNA Helicases DEAD-box , Desoxicitidina , Gencitabina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Animais , Humanos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Proteínas de Neoplasias , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitinação/efeitos dos fármacos
14.
JMIR Med Inform ; 12: e49978, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38904478

RESUMO

Background: The use of chronic disease information systems in hospitals and communities plays a significant role in disease prevention, control, and monitoring. However, there are several limitations to these systems, including that the platforms are generally isolated, the patient health information and medical resources are not effectively integrated, and the "Internet Plus Healthcare" technology model is not implemented throughout the patient consultation process. Objective: The aim of this study was to evaluate the efficiency of the application of a hospital case management information system in a general hospital in the context of chronic respiratory diseases as a model case. Methods: A chronic disease management information system was developed for use in general hospitals based on internet technology, a chronic disease case management model, and an overall quality management model. Using this system, the case managers provided sophisticated inpatient, outpatient, and home medical services for patients with chronic respiratory diseases. Chronic respiratory disease case management quality indicators (number of managed cases, number of patients accepting routine follow-up services, follow-up visit rate, pulmonary function test rate, admission rate for acute exacerbations, chronic respiratory diseases knowledge awareness rate, and patient satisfaction) were evaluated before (2019-2020) and after (2021-2022) implementation of the chronic disease management information system. Results: Before implementation of the chronic disease management information system, 1808 cases were managed in the general hospital, and an average of 603 (SD 137) people were provided with routine follow-up services. After use of the information system, 5868 cases were managed and 2056 (SD 211) patients were routinely followed-up, representing a significant increase of 3.2 and 3.4 times the respective values before use (U=342.779; P<.001). With respect to the quality of case management, compared to the indicators measured before use, the achievement rate of follow-up examination increased by 50.2%, the achievement rate of the pulmonary function test increased by 26.2%, the awareness rate of chronic respiratory disease knowledge increased by 20.1%, the retention rate increased by 16.3%, and the patient satisfaction rate increased by 9.6% (all P<.001), while the admission rate of acute exacerbation decreased by 42.4% (P<.001) after use of the chronic disease management information system. Conclusions: Use of a chronic disease management information system improves the quality of chronic respiratory disease case management and reduces the admission rate of patients owing to acute exacerbations of their diseases.

16.
Cancer Lett ; 593: 216964, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38762193

RESUMO

Tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME) and strongly associated with poor prognosis and drug resistance, including checkpoint blockade immunotherapy in solid tumor patients. However, the mechanism by which TAM affects immune metabolism reprogramming and immune checkpoint signalling pathway in the TME remains elusive. In this study we found that transforming growth factor-beta (TGF-ß) secreted by M2-TAMs increased the level of glycolysis in bladder cancer (BLCA) and played important role in PD-L1-mediated immune evasion through pyruvate kinase isoenzymes M2 (PKM2). Mechanistically, TGF-ß promoted high expression of PKM2 by promoting the nuclear translocation of PKM2 dimer in conjunction with phosphorylated signal transducer and activator of transcription (p-STAT3), which then exerted its kinase activity to promote PD-L1 expression in BLCA. Moreover, SB-431542 (TGF-ß blocker) and shikonin (PKM2 inhibitor) significantly reduced PD-L1 expression and inhibited BLCA growth and organoids by enhancing anti-tumor immune responses. In conclusion, M2-TAM-derived TGF-ß promotes PD-L1-mediated immune evasion in BLCA by increasing the PKM2 dimer-STAT3 complex nuclear translocation. Combined blockade of the TGF-ß receptor and inhibition of PKM2 effectively prevent BLCA progression and immunosuppression, providing a potential targeted therapeutic strategy for BLCA.


Assuntos
Antígeno B7-H1 , Proteínas de Membrana , Evasão Tumoral , Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Glicólise , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Naftoquinonas , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética
17.
Int J Biol Macromol ; 265(Pt 1): 130868, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492687

RESUMO

The low oxygen environment of the periodontal pocket favors pathogenic anaerobes' growth, biofilm formation, and quick recurrence after periodontal treatment. In contrast, oxygen is detrimental to anaerobes, such as Porphyromonas gingivalis (P. gingivalis), since they lack a complete anti-oxidation mechanism to detoxify the oxygen challenge. Therefore, consistently feeding pathogenic anaerobes with abundant oxygen would be an effective strategy to combat them. Here, we reported injectable oxygen-generating hydrogels as oxygen mediators to alleviate the local anaerobic environment and eliminate periodontal pathogens. Gelatin methacrylate (GelMA) hydrogels loaded with calcium peroxide (CPO) possessed excellent injectability and exhibited burst releases of oxygen within 24 h with a 40 % oxygen tension peak. CPO-GelMA hydrogels with CPO concentrations of 5, 10, and 15 % reduced 60, 99, and 89.9 % viable P. gingivalis, respectively. Five percentage CPO-GelMA hydrogel downregulated gingipain and fimA gene expression in P. gingivalis without resistance development. Moreover, the CPO-GelMA hydrogels remarkably prevented biofilm formation and eradicated both monospecies and multispecies bacterial biofilms. In conclusion, CPO-GelMA hydrogels exert remarkable antimicrobial and antibiofilm effects on subgingival biofilms, providing a promising strategy for periodontal treatment.


Assuntos
Gelatina , Hidrogéis , Peróxidos , Hidrogéis/farmacologia , Gelatina/farmacologia , Metacrilatos/farmacologia , Oxigênio , Biofilmes
18.
J Thromb Haemost ; 22(7): 1956-1972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554936

RESUMO

BACKGROUND: Patients with cancer are at an increased risk of developing a hypercoagulative phenotype and venous thromboembolism. However, no clinical trial has yet confirmed that anticoagulant therapy improves cancer prognosis, and the mechanism underlying hypercoagulation in patients with bladder cancer is not well understood. OBJECTIVES: We hypothesized that the prognostic genes affect tumor progression via tumor-mediated coagulation. METHODS: We detected the most significant prognostic genes of bladder cancer with The Cancer Genome Atlas dataset and validated them in 2 Gene Expression Omnibus datasets and 1 ArrayExpress dataset. Immunohistochemical tests were performed on a cohort of 80 individuals to further examine the prognostic genes. For the most reliable prognostic gene, its influence on coagulation was evaluated with gene knockdown followed by next-generation sequencing and cellular and animal experiments. RESULTS: Depletion of microtubule interacting and trafficking domain containing 1 (MITD1), a major prognostic gene of bladder cancer, significantly increased the tissue factor (TF) expression. MITD1 deficiency led to cytokinesis arrest, which, in turn, promoted the TF expression via unfolded protein response and c-Jun. The knockdown of IRE1, an essential kinase of unfolded protein response or the inactivation of c-Jun using c-Jun N-terminal kinase inhibitors weakened MITD1 deficiency- or dithiothreitol-induced TF upregulation. Cells lacking MITD1 promoted coagulation and metastasis in the experimental metastasis assay. CONCLUSION: Our findings suggest the novel role of tumor prognostic genes upon the development of hypercoagulative phenotype and venous thromboembolism, thereby underlining the importance of anticoagulant therapy and shedding light on the therapeutic value of targeting MITD1 in bladder cancer.


Assuntos
Coagulação Sanguínea , Tromboplastina , Neoplasias da Bexiga Urinária , Animais , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Nus , Prognóstico , Transdução de Sinais , Tromboplastina/metabolismo , Tromboplastina/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
19.
Adv Sci (Weinh) ; 11(20): e2306767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552153

RESUMO

Plant movements for survival are nontrivial. Antheridia in the moss Physcomitrium patens (P. patens) use motion to eject sperm in the presence of water. However, the biological and mechanical mechanisms that actuate the process are unknown. Here, the burst of the antheridium of P. patens, triggered by water, results from elastic instability and is determined by an asymmetric change in cell geometry. The tension generated in jacket cell walls of antheridium arises from turgor pressure, and is further promoted when the inner walls of apex burst in hydration, causing water and cellular contents of apex quickly influx into sperm chamber. The outer walls of the jacket cells are strengthened by NAC transcription factor VNS4 and serve as key morphomechanical innovations to store hydrostatic energy in a confined space in P. patens. However, the antheridium in liverwort Marchantia polymorpha (M. polymorpha) adopts a different strategy for sperm release; like jacket cell outer walls of P. patens, the cells surrounding the antheridium of M. polymorpha appear to play a similar role in the storage of energy. Collectively, the work shows that plants have evolved different ingenious devices for sperm discharge and that morphological innovations can differ.


Assuntos
Bryopsida , Bryopsida/fisiologia , Bryopsida/citologia , Bryopsida/metabolismo , Marchantia/genética , Marchantia/metabolismo , Marchantia/citologia , Marchantia/fisiologia , Briófitas/fisiologia , Briófitas/metabolismo
20.
Elife ; 132024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436304

RESUMO

The entorhinal cortex is involved in establishing enduring visuo-auditory associative memory in the neocortex. Here we explored the mechanisms underlying this synaptic plasticity related to projections from the visual and entorhinal cortices to the auditory cortex in mice using optogenetics of dual pathways. High-frequency laser stimulation (HFS laser) of the visuo-auditory projection did not induce long-term potentiation. However, after pairing with sound stimulus, the visuo-auditory inputs were potentiated following either infusion of cholecystokinin (CCK) or HFS laser of the entorhino-auditory CCK-expressing projection. Combining retrograde tracing and RNAscope in situ hybridization, we show that Cck expression is higher in entorhinal cortex neurons projecting to the auditory cortex than in those originating from the visual cortex. In the presence of CCK, potentiation in the neocortex occurred when the presynaptic input arrived 200 ms before postsynaptic firing, even after just five trials of pairing. Behaviorally, inactivation of the CCK+ projection from the entorhinal cortex to the auditory cortex blocked the formation of visuo-auditory associative memory. Our results indicate that neocortical visuo-auditory association is formed through heterosynaptic plasticity, which depends on release of CCK in the neocortex mostly from entorhinal afferents.


Assuntos
Colecistocinina , Córtex Entorrinal , Camundongos , Animais , Córtex Entorrinal/fisiologia , Colecistocinina/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA