Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 168: 272-280, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329833

RESUMO

Due to ecotoxicity, zinc (Zn) as a heavy metal from electronic waste (e-waste) has been a source of pollution to soil and water for several decades. This study proposes a solution to this serious environmental problem via a self-consumed strategy to stabilize Zn in anode residues. This unique method uses cathode residues from spent zinc-manganese oxide (Zn-Mn) batteries as a stabilized matrix via thermal treatment. More specifically, the strategy incorporates zinc metal into a chemically durable matrix comprised of a lattice of AB2O4 compounds. Results demonstrate that 5-20 wt% of anode residue were fully incorporated into the cathode residue to form a Mn3-xZnxO4 solid solution after sintering at 1300 ℃ for 3 h. The lattice parameters of the Mn3-xZnxO4 solid solution reveal an approximately linear decreasing evolution with the addition of anode residue. To determine the occupancy of Zn in the crystal structure of the products, we used Raman and Rietveld refinement processes; the results reveal that Mn2+ in the 4a site was gradually replaced by Zn2+. We then used a prolonged toxicity leaching procedure to evaluate the Zn stabilization effect after phase transformation; this showed that the Zn leachability of sintered anode-doped cathode sample was over 40 folds lower than that of untreated anode residue. Therefore, this study presents an economical and effective strategy for mitigating the presence of heavy metal pollutants derived from e-waste.


Assuntos
Poluentes Ambientais , Metais Pesados , Zinco/química , Metais Pesados/química , Manganês , Poluentes Ambientais/análise , Poluentes Ambientais/química , Ácidos , Eletrodos
2.
ACS Omega ; 8(13): 12362-12371, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033813

RESUMO

Diesel exhaust emissions are major outdoor air pollutants. Reducing the emission of NOx by diesel commercial vehicles and related machineries is at present a great challenge. In this study, we synthesize a catalyst for low-temperature catalytic reduction of NO using calcinated UiO-66(Zr) as a host for the doping of cerium, manganese, and titanium by the incipient wetness impregnation, followed by the dispersion of 1.0 wt % platinum. A solid solution of Ce0.15Zr0.54Mn0.11Ti0.20O2/1.0Pt (CZMTO/Pt) is synthesized as evident by the structural characterizations. The catalyst demonstrates significant NO reduction in the laboratory due to the synergistic effect of various elements, with NO conversion above 80% at 160 °C.

3.
Inorg Chem ; 58(23): 15880-15888, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31718174

RESUMO

Graphitic carbon nitride (g-C3N4)-based materials have attracted interdisciplinary attention from many fields. However, their crystal structures have not yet been described well. Poly(triazine imide)/LiCl (PTI/LiCl) of good crystallinity synthesized from salt melts enables a confident structural solution for a better understanding of g-C3N4-based materials. In this study, we synthesize PTI/LiCl of high crystallinity in air without byproducts and confirm the orthorhombic feature, which is not observed in powder X-ray diffraction (PXRD) patterns at room temperature, by employing low-temperature synchrotron PXRD. Together with spectroscopic techniques (X-ray photoelectron spectroscopy, solid-state nuclear magnetic resonance, and Fourier-transform infrared/Raman), the orthorhombic structure (space group Cmc21, No. 36) was determined and found to be a superstructure of the previously reported hexagonal structure, as confirmed by electron diffraction. The temperature-dependent synchrotron PXRD data also reveal a highly anisotropic expansion. This work also shows the much higher activity of PTI/LiCl than of g-C3N4 for the photocatalytic degradation of methyl orange under ultraviolet irradiation, especially so for PTI/LiCl with a densely packed (001) plane. This study demonstrates the structural complexity of the g-C3N4 class of materials and illustrates how their temperature-dependent anisotropies facilitate the discovery of the structural features in resolving the structure of g-C3N4-related materials and their structure-property relationship.

4.
Environ Pollut ; 249: 144-151, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30884393

RESUMO

Red mud, which is from the aluminum industry, is a potentially under-utilized resource. Technological processes for using low-cost red mud as an alternative precursor for detoxifying metal pollutants urgently need to be developed. In this study, we systematically investigated the feasibility of using red mud to detoxify metal-containing wastes (e.g., fly ash) via the formation of preferable crystalline phases. To understand the mechanism of metal detoxification by red mud, CuO, NiO, and ZnO were blended with red mud at different weight ratios and the mixtures were then subjected to ceramic-sintering. After sintering, the X-ray diffraction results revealed that all of the metals (i.e., Cu, Ni, and Zn) were able to be crystallographically incorporated into spinel lattices. Sintering the red mud at 1100 °C for 3 h effectively converted the metals into spinels. The mixing weight ratios strongly affected the efficiency of the metal incorporation. The red mud was able to incorporate 15 wt% of metal oxides. The incorporation mechanisms mainly occurred between the metal oxide(s) and hematite. Modified TCLP tests were conducted to further evaluate the metal stabilization performance of the red mud, which demonstrated the leachabilities of ZnO and the sintered red mud + ZnO product. The concentration of leached metal was substantially reduced after the incorporation process, thus demonstrating that red mud can be successfully used to detoxify metals. The results of this study reveal that waste red mud can be feasibly reused as a promising waste-to-resource strategy for stabilizing heavy metal wastes.


Assuntos
Óxido de Alumínio/química , Óxido de Magnésio/química , Metais Pesados/química , Poluentes do Solo/química , Alumínio/química , Cerâmica/química , Cinza de Carvão , Cobre/química , Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Compostos Férricos , Níquel/química , Difração de Raios X , Zinco/química
5.
Inorg Chem ; 56(16): 9913-9921, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28782955

RESUMO

Zirconolite-based glass-ceramic is considered a promising wasteform for conditioning minor actinide-rich nuclear wastes. Recent studies on this wasteform have sought to enhance the partitioning ratio (PR) of minor actinides in zirconolite crystal. To optimize the PR in the SiO2-Al2O3-CaO-TiO2-ZrO2 system, a novel conceptual approach, which can be derived from the chemical composition and quantity of zirconolite crystal in glass-ceramic, was introduced based on the results of Rietveld quantitative X-ray diffraction analysis and transmission electron microscopy energy dispersive X-ray spectroscopy. To verify this new conceptual approach, the influences of the crystallization temperature, the concentration of additives, and ionic radii on the PR of various surrogates (Ce, Nd, Gd, and Yb) in zirconolite were examined. The results reveal that the PR of Nd3+ in zirconolite can be as high as 41%, but it decreases as the crystallization temperature increases. The quantities of all phases (including crystalline and amorphous) remained nearly constant when increasing the loading of Nd2O3 in glass-ceramic products crystallized at 1050 °C for 2 h. Correspondingly, the PR of Nd3+ decreases in a linear fashion with the loading contents of Nd2O3. The radius of ions also has a great influence on the PR, and an increase in the ionic radius leads to a decrease in the PR. This new approach will be an important tool to facilitate the exploration of a glass-ceramic matrix for the disposal of minor actinide-rich nuclear wastes.

6.
J Hazard Mater ; 321: 449-455, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27669386

RESUMO

A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr1.32Fe0.19Al0.49O4. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5wt.%), diopside (5.2wt.%), and some amorphous contents (91.2wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr2O3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that the use of affordable additives has potential in more reliably immobilizing COPR with a spinel-based glass-ceramic for safer disposal of this hazardous waste.

7.
Inorg Chem ; 54(15): 7353-61, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26204432

RESUMO

Zirconolite is a candidate host for immobilizing long-lived radionuclides. Zirconolite-based glass-ceramics in the CaO-SiO2-Al2O3-TiO2-ZrO2-Nd2O3-Na2O matrix are a potential waste form for immobilizing actinide radionuclides and can offer double barriers to immobilize radioactive elements. However, the X-ray diffraction patterns of the zirconolite derived from the glass matrix (glass ceramic, GC) are significantly different from those prepared by powder sintering (PS). In this Article, the crystal structures of Al-Nd codoped zirconolite grown via the glass matrix route and the powder sintering route are investigated in detail. Two samples of Al-Nd codoped zirconolite were prepared: one was grown from a CaO-SiO2-Al2O3-TiO2-ZrO2-Nd2O3-Na2O glass matrix, and the other was prepared with a Ca0.75Nd0.25ZrTi1.75Al0.25O7 composition by powder sintering. The samples were then characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX), and selected area electron diffraction (SAED). The chemical composition of the 100-500 nm zirconolite crystals grown from a glass matrix was determined by TEM-EDX to be Ca0.83Nd0.25Zr0.85Ti1.95Al0.11O7. PXRD and SAED results showed that these two Al-Nd codoped zirconolite phases were crystallized in space group C12/c1. The HRTEM images and SAED results showed that there were heavy stacking faults in the zirconolite crystals grown from the glass matrix. In contrast, far fewer defects were found in the zirconolite crystals prepared by powder sintering. The split-atom model was adopted for the first time to construct the Al-Nd codoped zirconolite structure grown from glass during the Rietveld refinement. The isostructural method assisted by Rietveld refinement was used to resolve the Al-Nd codoped zirconolite structures prepared by different methods. The occupancies of the cation sites were identified, and the distribution behavior of Nd(3+) was further investigated. The results indicate that the heavy stacking faults may lead to substantial differences in the Al-Nd codoped zirconolite structures prepared by these two fabrication routes.

8.
Chemosphere ; 131: 171-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25841072

RESUMO

Red mud is a worldwide environmental problem, and many authorities are trying to find an economic solution for its beneficial application or/and safe disposal. Ceramic production is one of the potential waste-to-resource strategies for using red mud as a raw material. Before implementing such a strategy, an unambiguous understanding of the reaction behavior of red mud under thermal conditions is essential. In this study, the phase compositions and transformation processes were revealed for the Pingguo red mud (PRM) heat-treated at different sintering temperatures. Hematite, perovskite, andradite, cancrinite, kaolinite, diaspore, gibbsite and calcite phases were observed in the samples. However, unlike those red mud samples from the other regions, no TiO2 (rutile or anatase) or quartz were observed. Titanium was found to exist mainly in perovskite and andradite while the iron mainly existed in hematite and andradite. A new silico-ferrite of calcium and aluminum (SFCA) phase was found in samples treated at temperatures above 1100°C, and two possible formation pathways for SFCA were suggested. This is the first SFCA phase to be reported in thermally treated red mud, and this finding may turn PRM waste into a material resource for the iron-making industry. Titanium was found to be enriched in the perovskite phase after 1200°C thermal treatment, and this observation indicated a potential strategy for the recovery of titanium from PRM. In addition to noting these various resource recovery opportunities, this is also the first study to quantitatively summarize the reaction details of PRM phase transformations at various temperatures.


Assuntos
Temperatura Alta , Resíduos/análise , Difração de Raios X/métodos , Compostos de Cálcio , Cerâmica , Compostos Férricos , Ferro , Caulim , Óxidos , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...