Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047072

RESUMO

Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.

2.
Adv Mater ; : e2406474, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39054931

RESUMO

One-for-all phototheranostics based on a single molecule is recognized as a convenient approach for cancer treatment, whose efficacy relies on precise lesion localization through multimodal imaging, coupled with the efficient exertion of phototherapy. To unleash the full potential of phototheranostics, advancement in both phototheranostic agents and light delivery methods is essential. Herein, an integrated strategy combining a versatile molecule featuring aggregation-induced emission, namely tBuTTBD, with a modified optical fiber to realize comprehensive tumor diagnosis and "inside-out" irradiation in the orthotopic breast tumor, is proposed for the first time. Attributed to the intense donor-acceptor interaction, highly distorted conformation, abundant molecular rotors, and loose intermolecular packing upon aggregation, tBuTTBD can synchronously undergo second near-infrared (NIR-II) fluorescence emission, photothermal and photodynamic generation under laser irradiation, contributing to a trimodal NIR-II fluorescence-photoacoustic (PA)-photothermal imaging-guided phototherapy. The tumor treatment is further carried out following the insertion of a modified optical fiber, which is fabricated by splicing a flat-end fiber with an air-core fiber. This configuration aims to enable effective in situ phototherapy by maximizing energy utilization for therapeutic benefits. This work not only enriches the palette of NIR-II phototheranostic agents but also provides valuable insight for exploring an integrated phototheranostic protocol for practical cancer treatment.

3.
Fundam Res ; 4(1): 123-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933834

RESUMO

The most important optical component in an optical fiber endoscope is its objective lens. To achieve a high imaging performance level, the development of an ultra-compact objective lens is thus the key to an ultra-thin optical fiber endoscope. In this work, we use femtosecond laser 3D printing to develop a series of micro objective lenses with different optical designs. The imaging resolution and field-of-view performances of these printed micro objective lenses are investigated via both simulations and experiments. For the first time, multiple micro objective lenses with different fields of view are printed on the end face of a single imaging optical fiber, thus realizing the perfect integration of an optical fiber and objective lenses. This work demonstrates the considerable potential of femtosecond laser 3D printing in the fabrication of micro-optical systems and provides a reliable solution for the development of an ultrathin fiber endoscope.

5.
Opt Lett ; 49(5): 1233-1236, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426981

RESUMO

We demonstrate a novel, to the best of our knowledge, high-temperature pressure sensor based on a highly birefringent fiber Bragg grating (Hi-Bi FBG) fabricated in a dual side-hole fiber (DSHF). The Hi-Bi FBG is generated by a femtosecond laser directly written sawtooth structure in the DSHF cladding along the fiber core through the slow axis (i.e., the direction perpendicular to the dual-hole axis). The sawtooth structure serves as an in-fiber stressor and also generates Bragg resonance due to its periodicity. The DSHF was etched by hydrofluoric acid to increase its pressure sensitivity, and the diameter of two air holes was enlarged from 38.2 to 49.6 µm. A Hi-Bi FBG with a birefringence of up to 1.8 × 10-3 was successfully created in the etched DSHF. Two distinct reflection peaks could be observed by using a commercial FBG interrogator. Moreover, pressure measurement from 0 to 3 MPa at a high temperature of 700°C was conducted by monitoring the birefringence-induced peak splits and achieved a high-pressure sensitivity of -21.2 pm/MPa. The discrimination of the temperature and pressure could be realized by simultaneously measuring the Bragg wavelength shifts and peak splits. Furthermore, a wavelength-division-multiplexed (WDM) Hi-Bi FBG array was also constructed in the DSHF and was used for quasi-distributed high-pressure sensing up to 3 MPa. As such, the proposed femtosecond laser-inscribed Hi-Bi FBG is a promising tool for high-temperature pressure sensing in harsh environments, such as aerospace vehicles, nuclear reactors, and petrochemical industries.

6.
Opt Lett ; 49(5): 1273-1276, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426991

RESUMO

An optical frequency domain reflectometry (OFDR) shape sensor was demonstrated based on a femtosecond-laser-inscribed weak fiber Bragg grating (WFBG) array in a multicore fiber (MCF). A WFBG array consisting of 60 identical WFBGs was successfully inscribed in each core along a 60 cm long MCF using the femtosecond-laser point-by-point technology, where the length and space of each WFBG were 2 and 8 mm, respectively. The strain distribution of each core in two-dimensional (2D) and three-dimensional (3D) shape sensing was successfully demodulated using the traditional cross correlation algorithm, attributed to the accurate localization of each WFBG. The minimum reconstruction error per unit length of the 2D and 3D shape sensors has been improved to 1.08% and 1.07%, respectively, using the apparent curvature vector method based on the Bishop frame.

7.
Opt Lett ; 49(3): 446-449, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300027

RESUMO

Sapphire fiber Bragg grating (SFBG) is a promising high-temperature strain sensor due to its melting point of 2045°C. However, the study on the long-term stability of SFBG under high temperature with an applied strain is still missing. In this paper, we reported for the first time to our knowledge on the critical temperature point of plastic deformation of the SFBG and demonstrated that the SFBG strain sensor can operate stably below 1200°C. At first, we experimentally investigated the topography and the spectral characteristics of the SFBG at different temperatures (i.e., 25°C, 1180°C, and 1600°C) with applied 650 µÎµ. The reflection peak of the SFBG exhibits a redshift of about 15 nm and broadens gradually within 8 h at 1600°C, and the tensile force value decreases by 0.60 N in this process. After the test, the diameter of the SFBG region decreases from 100 to 88.6 µm, and the grating period is extended from 1.76 to 1.79 µm. This indicates that the plastic deformation of the SFBG happened indeed, and it was elongated irreversibly. Moreover, the stability of the Bragg wavelength of the SFBG under high temperature with the applied strain was evaluated. The result demonstrates the SFBG can be used to measure strain reliably below 1200°C. Furthermore, the strain experiments of SFBG at 25°C, 800°C, and 1100°C have been carried out. A linear fitting curve with high fitness (R2 > 0.99) and a lower strain measurement error (<15 µÎµ) can be obtained. The aforementioned results make SFBG promising for high-temperature strain sensing in many fields, such as, power plants, gas turbines, and aerospace vehicles.

8.
Opt Lett ; 49(3): 494-497, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300042

RESUMO

We demonstrate a tunable and fully enclosed fiber-based Bessel beam generator that has the potential for applications in a tough environment. This generator consists of a few-mode fiber (FMF), a short section of graded index fiber (GIF), and a 3D-printed helical axicon. The FMF provides tunable modes that carry an orbital angular momentum (OAM). The GIF was fused to the FMF to expand and collimate the generated modes. The helical axicon was 3D-printed on the GIF tip without any holes or gaps, which reshapes the OAM modes into Bessel modes and adds an additional helical phase structure to them, resulting in the generation of zeroth-order, first-order, and second-order Bessel beams. The fully enclosed structure provides high mechanical strength and optical stability, which enable the generator to be suitable for imaging or particle manipulation in a complex liquid or air environment.

9.
Nano Lett ; 24(10): 2980-2988, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311846

RESUMO

The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.


Assuntos
Antibacterianos , Antifúngicos , Fibras Ópticas , Testes de Sensibilidade Microbiana , Candida albicans , Escherichia coli
10.
Sensors (Basel) ; 24(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257435

RESUMO

We propose a humidity sensor using an excessively tilted fiber grating (Ex-TFG) coated with agarose fabricated using femtosecond laser processing. The processed grating showcases remarkable differentiation between TE and TM modes, achieving an exceptionally narrow bandwidth of approximately 1.5 nm and an impressive modulation depth of up to 15 dB for both modes. We exposed the agarose-coated TFG sensor to various relative humidity levels and monitored the resonance wavelength to test its humidity sensing capability. Our findings demonstrated that the sensor exhibited a rapid response time (2-4 s) and showed a high response sensitivity (18.5 pm/%RH) between the humidity changes and the resonant wavelength shifts. The high sensitivity, linearity, repeatability, low hysteresis, and excellent long-term stability of the TFG humidity sensor, as demonstrated in our experimental results, make it an attractive option for environmental monitoring or biomedical diagnosis.

11.
J Photochem Photobiol B ; 250: 112816, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029664

RESUMO

Although photobiomodulation (PBM) and gamma visual stimulatqion (GVS) have been overwhelmingly explored in the recent time as a possible light stimulation (LS) means of Alzheimer's disease (AD) therapy, their effects have not been assessed at once. In our research, the AD mouse model was stimulated using light with various parameters [continuous wave (PBM) or 40 Hz pulsed visible LED (GVS) or 40 Hz pulsed 808 nm LED (PBM and GVS treatment)]]. The brain slices collected from the LS treated AD model mice were evaluated using (i) fluorescence microscopy to image thioflavine-S labeled amy-loid-ß (Aß) plaques (the main hallmark of AD), or (ii) two-photon excited fluorescence (TPEF) imaging of unlabeled Aß plaques, showing that the amount of Aß plaques was reduced after LS treatment. The imaging results correlated well with the results of Morris water maze (MWM) test, which demonstrated that the spatial learning and memory abilities of LS treated mice were noticeably higher than those of untreated mice. The LS effect was also assessed by in vivo nonlinear optical imaging, revealing that the cerebral amyloid angiopathy decreased spe-cifically as a result of 40 Hz pulsed 808 nm irradiation, on the contrary, the angiopathy reversed after visible 40 Hz pulsed light treatment. The obtained results provide useful reference for further optimization of the LS (PBM or GVS) parameters to achieve efficient phototherapy of AD.


Assuntos
Doença de Alzheimer , Terapia com Luz de Baixa Intensidade , Camundongos , Animais , Estimulação Luminosa , Terapia com Luz de Baixa Intensidade/métodos , Encéfalo/metabolismo , Placa Amiloide , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos
12.
Opt Lett ; 48(24): 6573-6576, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099802

RESUMO

We propose a Mach-Zehnder interferometer based on an in-fiber ZnO microwire structure for ultraviolet sensing. The device undergoes femtosecond laser micromachining and chemical etching on a single-mode optical fiber initially, creating a microgroove that extends to half of the core's depth, into which a single ZnO microwire is transferred. The ZnO microwire and the remaining core are used as the sensing arm and the reference arm, respectively, forming a Mach-Zehnder interferometer. To enhance the stability and the sensitivity, ZnO nanoparticles are filled into the microgroove after the ZnO microwire is transferred. The fabricated device exhibits a sensitivity of 0.86 nm/(W·cm-2) for ultraviolet sensing, along with a response time of 115 ns (rise time) and 133 µs (decay time), respectively. The proposed sensor exhibits good ultraviolet sensitivity, offering a novel approach for ultraviolet sensing technology.

13.
Opt Lett ; 48(21): 5819-5822, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910767

RESUMO

A wide-range OFDR strain sensor was demonstrated based on femtosecond-laser-inscribed weak fiber Bragg grating (WFBG) array in standard SMF. A WFBG array consisting of 110 identical WFBGs was successfully fabricated along a 56 cm-long SMF. Compared with SMF, the cross-correlation coefficient of WFBG array was improved to 0.9 under the strain of 10,000 µÎµ. The position deviation under the strain of 10,000 µÎµ, i.e., 2.5 mm, could be accurately obtained and compensated simply by using peak finding algorithm. The maximum measurable strain of single- and multi-point strain sensing was up to 10,000 µÎµ without using any additional algorithms, where the sensing spatial resolution was 5 mm.

14.
Opt Lett ; 48(17): 4540-4543, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656548

RESUMO

We demonstrated a long-range and centimeter-spatial-resolution optical frequency domain reflectometry (OFDR) system based on an ultra-linear broadband optical frequency sweep. The high nonlinear sweeping effect of the distributed feedback (DFB) diode laser was suppressed by a pre-distortion method, ensuring that the injection-locking process remained stable during fast tuning over a large span. An optical linear frequency sweep (LFS) with a sweep range and sweep rate of up to 60 GHz and 15 THz/s, respectively, was ultimately obtained by optimizing the injection-locking system. The high performance OFDR based on the proposed LFS achieved a sampling spatial resolution of 1.71 mm. Furthermore, distributed strain sensing was implemented with high-spatial resolutions of about 5 cm and 7 cm in the measurement range over 1 km and 2 km, respectively.

15.
Biosens Bioelectron ; 241: 115672, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716156

RESUMO

Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.

16.
Nano Lett ; 23(17): 7975-7982, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642385

RESUMO

Second-harmonic generation (SHG) is a noninvasive imaging technique that enables the exploration of physiological structures without the use of an exogenous label. However, traditional SHG imaging is limited by optical diffraction, which restricts the spatial resolution. To break this limitation, we developed a novel approach called multifocal structured illumination microscopy-SHG (MSIM-SHG). By combination of SHG with MSIM, SHG-based super-resolution imaging of material molecules can be achieved, and this SHG super-resolution imaging has a wide range of applications for biological tissues and cells. MSIM-SHG achieved a lateral full width at half-maximum (fwhm) of 147 ± 13 nm and an axial fwhm of 493 ± 47 nm by imaging zinc oxide (ZnO) particles. Furthermore, MSIM-SHG was utilized to quantify collagen fiber alignment in various tissues such as the ovary, muscle, heart, kidney, and cartilage, demonstrating its feasibility for identifying collagen characteristics. MSIM-SHG has potential as a powerful tool for clinical diagnosis and biological research.


Assuntos
Microscopia , Microscopia de Geração do Segundo Harmônico , Feminino , Humanos , Iluminação , Matriz Extracelular , Coração
17.
Adv Healthc Mater ; 12(28): e2301568, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37499068

RESUMO

Luminogens with aggregation-induced emission characteristics (AIEgens) are considered good options for two-photon (2P) probes, owing to their flexibility of design, heavy-metal-free composition, and resistance to photobleaching. However, the design principles for large 2P absorption cross-section (δ) generally require high coplanarity, strong donor-acceptor (D-A) interactions, and long conjugation, which can severely weaken the brightness of AIEgens at the aggregated state and undermine their potential in 2P fluorescence imaging (2PFI). Exploration of a feasible approach to overcome the "Buckets Effect" of AIEgen-based 2P probes is thus a fascinating yet challenging task. Herein, an AIEgen, namely (Z)-2-(4-aminophenyl)-3-(5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)acrylonitrile (MTAA) is designed to have a big δ according to the calculation result and a low fluorescence quantum yield (QY) of 2.2% in dimethyl sulfoxide (DMSO). Impressively, upon integrating into bovine serum albumin (BSA), the protein-sized MTAA@BSA dots exhibit a 25-fold higher fluorescence QY compared to MTAA molecules, contributing to an imaging depth of 818 µm in the brain vasculature. The retention and clearance of MTAA@BSA dots in the liver and kidney are also studied using 2PFI. Overall, this work provides a facile approach to overcome the "Buckets Effect" of AIEgen to generate highly efficient, reliable, and biocompatible 2P probes.


Assuntos
Imagem Óptica , Fótons , Imagem Óptica/métodos , Corantes Fluorescentes
18.
Opt Lett ; 48(9): 2233-2236, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126242

RESUMO

A tunable mode convertor is experimentally demonstrated based on a fiber Bragg grating (FBG), which is fabricated in a graded-index nine-mode fiber by using a femtosecond laser. Nine linearly polarized (LP) modes were excited and the coupling efficiency of them can reach 90%. By adjusting the polarization controller, the ±1st-, ±2nd-, ±3rd-, and ±4th-order orbital angular momentum (OAM) modes were excited, which means the OAM tuning of 0-±1ℏ, 0-±2ℏ, 0-±3ℏ, and 0-±4ℏ were achieved. LP21/LP02, LP31/LP12, LP41/LP22/LP03 modes were successfully tuned at 1556.00 nm, 1555.10 nm, and 1554.25 nm by twisting the FBG, respectively. Moreover, combined with polarization and torsion control, the tuning between 0th- and -2nd-order OAM has been realized, which is converted from the tuning between LP02 and LP21. By using this method, the OAM tuning of ±1-±3ℏ and ±4-0-±2ℏ may be further realized theoretically.

19.
Biomed Opt Express ; 14(5): 1862-1873, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37206142

RESUMO

There is an urgent need for developing rapid and affordable antibiotic susceptibility testing (AST) technologies to inhibit the overuse of antibiotics. In this study, a novel microcantilever nanomechanical biosensor based on Fabry-Pérot interference demodulation was developed for AST. To construct the biosensor, a cantilever was integrated with the single mode fiber in order to form the Fabry-Pérot interferometer (FPI). After the attachment of bacteria on the cantilever, the fluctuations of cantilever caused by the bacterial movements were detected by monitoring the changes of resonance wavelength in the interference spectrum. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing the amplitude of cantilever's fluctuations was positively related on the quantity of bacteria immobilized on the cantilever and associated with the bacterial metabolism. The response of bacteria to antibiotics was dependent on the types of bacteria, the types and concentrations of antibiotics. Moreover, the minimum inhibitory and bactericidal concentrations for Escherichia coli were obtained within 30 minutes, demonstrating the capacity of this method for rapid AST. Benefiting from the simplicity and portability of the optical fiber FPI-based nanomotion detection device, the developed nanomechanical biosensor in this study provides a promising technique for AST and a more rapid alternative for clinical laboratories.

20.
Opt Lett ; 48(7): 1922-1925, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221800

RESUMO

A microbubble-probe whispering gallery mode resonator with high displacement resolution and spatial resolution for displacement sensing is proposed. The resonator consists of an air bubble and a probe. The probe has a diameter of ∼5 µm that grants micron-level spatial resolution. Fabricated by a CO2 laser machining platform, a universal quality factor of over 106 is achieved. In displacement sensing, the sensor exhibits a displacement resolution of 74.83 pm and an estimated measurement span of 29.44 µm. As the first microbubble probe resonator for displacement measurement, the component shows advantages in performance, and exhibits a potential in sensing with high precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA