Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1222339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675124

RESUMO

Introduction: Even during physiologic aging, the kidney experiences a loss of mass and a progressive functional decline. This is clinically relevant as it leads to an increased risk of acute and chronic kidney disease. The kidney tubular system plays an important role in the underlying aging process, but the involved cellular mechanisms remain largely elusive. Methods: Kidneys of 3-, 12- and 24-month-old male C57BL/6J mice were used for RNA sequencing, histological examination, immunostaining and RNA-in-situ-hybridization. Single cell RNA sequencing data of differentially aged murine and human kidneys was analyzed to identify age-dependent expression patterns in tubular epithelial cells. Senescent and non-senescent primary tubular epithelial cells from mouse kidney were used for in vitro experiments. Results: During normal kidney aging, tubular cells adopt an inflammatory phenotype, characterized by the expression of MHC class II related genes. In our analysis of bulk and single cell transcriptional data we found that subsets of tubular cells show an age-related expression of Cd74, H2-Eb1 and H2-Ab1 in mice and CD74, HLA-DQB1 and HLADRB1 in humans. Expression of MHC class II related genes was associated with a phenotype of tubular cell senescence, and the selective elimination of senescent cells reversed the phenotype. Exposure to the Cd74 ligand MIF promoted a prosenescent phenotype in tubular cell cultures. Discussion: Together, these data suggest that during normal renal aging tubular cells activate a program of 'tubuloinflammaging', which might contribute to age-related phenotypical changes and to increased disease susceptibility.


Assuntos
Envelhecimento , Rim , Humanos , Masculino , Animais , Camundongos , Idoso , Lactente , Pré-Escolar , Camundongos Endogâmicos C57BL , Envelhecimento/genética , Cadeias HLA-DRB1 , Fenótipo , Expressão Gênica
2.
Am J Physiol Renal Physiol ; 323(2): F171-F181, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635323

RESUMO

The kidney is a complex organ, which consists of multiple components with highly diverse cell types. A detailed understanding of these cell types in health and disease is crucial for the future development of preventive and curative treatment strategies. In recent years, single-cell RNA sequencing (scRNAseq) and single-nucleus RNA sequencing (snRNAseq) technology has opened up completely new possibilities in investigating the variety of renal cell populations in physiological and pathological states. Here, we systematically assessed differences between scRNAseq and snRNAseq approaches in transcriptome analysis of murine kidneys after ischemia-reperfusion injury. We included tissues from control kidneys and from kidneys harvested 1 wk after mild (17-min clamping time) and severe (27-min clamping time) transient unilateral ischemia. Our findings revealed important methodological differences in the discovery of inflammatory cells, tubular cells, and other specialized cell types. Although the scRNAseq approach was advantageous for investigating immune cells, the snRNAseq approach allowed superior insights into healthy and damaged tubular cells. Apart from differences in the quantitative discovery rate, we found important qualitative discrepancies in the captured transcriptomes with crucial consequences for the interpretation of cell states and molecular functions. Together, we provide an overview of method-dependent differences between scRNAseq and snRNAseq results from identical postischemic kidney tissues. Our results highlight the importance of choosing the right approach for specific research questions.NEW & NOTEWORTHY Single-cell and single-nucleus RNA sequencing technologies provide powerful new tools to examine complex tissues such as the kidney. This research reference paper provides practical information on the differences between the two technologies when examining murine kidneys after ischemia-reperfusion injury. The results will serve those who are debating which protocols to use in their given study.


Assuntos
Traumatismo por Reperfusão , Transcriptoma , Animais , Isquemia/metabolismo , Rim/metabolismo , Camundongos , Traumatismo por Reperfusão/patologia
3.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948355

RESUMO

Cellular senescence of renal tubular cells is associated with chronic diseases and age-related kidney disorders. Therapies to antagonize senescence are, therefore, explored as novel approaches in nephropathy. Exosomes derived from human mesenchymal stroma-/stem-like cells (MSC) entail the transfer of multiple bioactive molecules, exhibiting profound regenerative potential in various tissues, including therapeutic effects in kidney diseases. Here, we first demonstrate that exosomes promote proliferation and reduce senescence in aged MSC cultures. For potential therapeutic perspectives in organ rejuvenation, we used MSC-derived exosomes to antagonize senescence in murine kidney primary tubular epithelial cells (PTEC). Exosome treatment efficiently reduced senescence while diminishing the transcription of senescence markers and senescence-associated secretory phenotype (SASP) factors. Concomitantly, we observed less DNA damage foci and more proliferating cells. These data provide new information regarding the therapeutic property of MSC exosomes in the development of renal senescence, suggesting a contribution to a new chapter of regenerative vehicles in senotherapy.


Assuntos
Senescência Celular , Células Epiteliais/citologia , Exossomos/metabolismo , Rim/citologia , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Exossomos/transplante , Humanos , Rim/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo Secretor Associado à Senescência
4.
Cells ; 10(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201242

RESUMO

Cellular senescence, a stress-induced state of irreversible cell cycle arrest, is associated with organ dysfunction and age-related disease. While immortalized cell lines bypass key pathways of senescence, important mechanisms of cellular senescence can be studied in primary cells. Primary tubular epithelial cells (PTEC) derived from mouse kidney are highly susceptible to develop cellular senescence, providing a valuable tool for studying such mechanisms. Here, we tested whether genetic differences between mouse inbred strains have an impact on the development of stress-induced cellular senescence in cultured PTEC. Kidneys from 129S1, B6, NOD, NZO, CAST, and WSB mice were used to isolate PTEC. Cells were monitored for expression of typical senescence markers (SA-ß-galactosidase, γ-H2AX+/Ki67-, expression levels of CDKN2A, lamin B1, IL-1a/b, IL-6, G/M-CSF, IFN-g, and KC) at 3 and 10 days after pro-senescent gamma irradiation. Clear differences were found between PTEC from different strains with the highest senescence values for PTEC from WSB mice and the lowest for PTEC from 129S1 mice. PTEC from B6 mice, the most commonly used inbred strain in senescence research, had a senescence score lower than PTEC from WSB and CAST mice but higher than PTEC from NZO and 129S1 mice. These data provide new information regarding the influence of genetic diversity and help explain heterogeneity in existing data. The observed differences should be considered when designing new experiments and will be the basis for further investigation with the goal of identifying candidate loci driving pro- or anti-senescent pathways.


Assuntos
Senescência Celular/genética , Células Epiteliais/citologia , Rim/citologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Variação Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
5.
J Am Soc Nephrol ; 31(5): 983-995, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32209589

RESUMO

BACKGROUND: Expression of SerpinB2, a regulator of inflammatory processes, has been described in the context of macrophage activation and cellular senescence. Given that mechanisms for these processes interact and can shape kidney disease, it seems plausible that SerpinB2 might play a role in renal aging, injury, and repair. METHODS: We subjected SerpinB2 knockout mice to ischemia-reperfusion injury or unilateral ureteral obstruction. We performed phagocyte depletion to study SerpinB2's role beyond the effects of macrophages and transplanted bone marrow from knockout mice to wild-type mice and vice versa to dissect cell type-dependent effects. Primary tubular cells and macrophages from SerpinB2 knockout and wild-type mice were used for functional studies and transcriptional profiling. RESULTS: Cultured senescent tubular cells, kidneys of aged mice, and renal stress models exhibited upregulation of SerpinB2 expression. Functionally, lack of SerpinB2 in aged knockout mice had no effect on the magnitude of senescence markers but associated with enhanced kidney damage and fibrosis. In stress models, inflammatory cell infiltration was initially lower in knockout mice but later increased, leading to an accumulation of significantly more macrophages. SerpinB2 knockout tubular cells showed significantly reduced expression of the chemokine CCL2. Macrophages from knockout mice exhibited reduced phagocytosis and enhanced migration. Macrophage depletion and bone marrow transplantation experiments validated the functional relevance of these cell type-specific functions of SerpinB2. CONCLUSIONS: SerpinB2 influences tubule-macrophage crosstalk by supporting tubular CCL2 expression and regulating macrophage phagocytosis and migration. In mice, SerpinB2 expression seems to be needed for coordination and timely resolution of inflammation, successful repair, and kidney homeostasis during aging. Implications of SerpinB2 in human kidney disease deserve further exploration.


Assuntos
Injúria Renal Aguda/enzimologia , Envelhecimento/imunologia , Senescência Celular/imunologia , Túbulos Renais/enzimologia , Rim/enzimologia , Macrófagos/fisiologia , Inibidor 2 de Ativador de Plasminogênio/fisiologia , Traumatismo por Reperfusão/enzimologia , Obstrução Ureteral/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Animais , Movimento Celular , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Técnicas de Cocultura , Indução Enzimática , Células Epiteliais/metabolismo , Fibrose , Homeostase , Rim/irrigação sanguínea , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Fagocitose , Inibidor 2 de Ativador de Plasminogênio/deficiência , Traumatismo por Reperfusão/imunologia , Transcriptoma , Obstrução Ureteral/enzimologia , Obstrução Ureteral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...