Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224479

RESUMO

Visualizing synaptic connectivity has traditionally relied on time-consuming electron microscopy-based imaging approaches. To scale the analysis of synaptic connectivity, fluorescent protein-based techniques have been established, ranging from the labeling of specific pre- or post-synaptic components of chemical or electrical synapses to transsynaptic proximity labeling technology such as GRASP and iBLINC. In this paper, we describe WormPsyQi, a generalizable image analysis pipeline that automatically quantifies synaptically localized fluorescent signals in a high-throughput and robust manner, with reduced human bias. We also present a resource of 30 transgenic strains that label chemical or electrical synapses throughout the nervous system of the nematode Caenorhabditis elegans, using CLA-1, RAB-3, GRASP (chemical synapses), or innexin (electrical synapse) reporters. We show that WormPsyQi captures synaptic structures in spite of substantial heterogeneity in neurite morphology, fluorescence signal, and imaging parameters. We use these toolkits to quantify multiple obvious and subtle features of synapses - such as number, size, intensity, and spatial distribution of synapses - in datasets spanning various regions of the nervous system, developmental stages, and sexes. Although the pipeline is described in the context of synapses, it may be utilized for other 'punctate' signals, such as fluorescently tagged neurotransmitter receptors and cell adhesion molecules, as well as proteins in other subcellular contexts. By overcoming constraints on time, sample size, cell morphology, and phenotypic space, this work represents a powerful resource for further analysis of synapse biology in C. elegans.


Assuntos
Caenorhabditis elegans , Sinapses Elétricas , Humanos , Animais , Animais Geneticamente Modificados , Corantes , Fluorescência
2.
Curr Biol ; 32(24): 5309-5322.e6, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36455561

RESUMO

Physiological stress induces aversive memory formation and profoundly impacts animal behavior. In C. elegans, concurrent mitochondrial disruption induces aversion to the bacteria that the animal inherently prefers, offering an experimental paradigm for studying the neural basis of aversive memory. We find that, under mitochondrial stress, octopamine secreted from the RIC modulatory neuron targets the AIY interneuron through the SER-6 receptor to trigger learned bacterial aversion. RIC responds to systemic mitochondrial stress by increasing octopamine synthesis and acts in the formation of aversive memory. AIY integrates sensory information, acts downstream of RIC, and is important for the retrieval of aversive memory. Systemic mitochondrial dysfunction induces RIC responses to bacterial cues that parallel stress induction, suggesting that physiological stress activates latent communication between RIC and the sensory neurons. These findings provide insights into the circuit and neuromodulatory mechanisms underlying stress-induced aversive memory.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Octopamina , Interneurônios/fisiologia , Proteínas de Caenorhabditis elegans/genética , Células Receptoras Sensoriais/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(11): e2115533119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254908

RESUMO

SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode Caenorhabditis elegans to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.


Assuntos
Caenorhabditis elegans/fisiologia , Mitocôndrias/metabolismo , Receptores de Serotonina/metabolismo , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , Estresse Fisiológico , Animais , Aprendizagem da Esquiva , Interações Hospedeiro-Patógeno , Interneurônios/metabolismo , Aprendizagem
4.
Neurosci Res ; 178: 87-92, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35074444

RESUMO

Physiological stress triggers aversive learning that profoundly alters animal behavior. Systemic mitochondrial disruption induces avoidance of C. elegans to non-pathogenic food bacteria. Mutations in cat-2 and dat-1, which control dopamine synthesis and reuptake, respectively, impair this learned bacterial avoidance, suggesting that dopaminergic modulation is essential. Cell-specific rescue experiments indicate that dopamine likely acts from the CEP and ADE neurons to regulate learned bacterial avoidance. We find that mutations in multiple dopamine receptor genes, including dop-1, dop-2 and dop-3, reduced learned bacterial avoidance. Our work reveals a role for dopamine signaling in C. elegans learned avoidance behavior induced by mitochondrial stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Aprendizagem da Esquiva , Comportamento Animal , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dopamina
5.
Development ; 147(14)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32631831

RESUMO

Self-avoidance is a conserved mechanism that prevents crossover between sister dendrites from the same neuron, ensuring proper functioning of the neuronal circuits. Several adhesion molecules are known to be important for dendrite self-avoidance, but the underlying molecular mechanisms are incompletely defined. Here, we show that FMI-1/Flamingo, an atypical cadherin, is required autonomously for self-avoidance in the multidendritic PVD neuron of Caenorhabditis elegans The fmi-1 mutant shows increased crossover between sister PVD dendrites. Our genetic analysis suggests that FMI-1 promotes transient F-actin assembly at the tips of contacting sister dendrites to facilitate their efficient retraction during self-avoidance events, probably by interacting with WSP-1/N-WASP. Mutations of vang-1, which encodes the planar cell polarity protein Vangl2 previously shown to inhibit F-actin assembly, suppress self-avoidance defects of the fmi-1 mutant. FMI-1 downregulates VANG-1 levels probably through forming protein complexes. Our study identifies molecular links between Flamingo and the F-actin cytoskeleton that facilitate efficient dendrite self-avoidance.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Comportamento Animal , Caderinas/antagonistas & inibidores , Caderinas/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Dendritos/metabolismo , Regulação para Baixo , Microscopia de Fluorescência , Mutagênese , Neurônios/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fotodegradação , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Imagem com Lapso de Tempo
6.
Development ; 145(24)2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30504124

RESUMO

Signaling that instructs the migration of neurons needs to be tightly regulated to ensure precise positioning of neurons and subsequent wiring of the neuronal circuits. Wnt-Frizzled signaling controls neuronal migration in metazoans, in addition to many other aspects of neural development. We show that Caenorhabditis elegans VANG-1, a membrane protein that acts in the planar cell polarity (PCP) pathway, antagonizes Wnt signaling by facilitating endocytosis of the Frizzled receptors. Mutations of vang-1 suppress migration defects of multiple classes of neurons in the Frizzled mutants, and overexpression of vang-1 causes neuronal migration defects similar to those of the Frizzled mutants. Our genetic experiments suggest that VANG-1 facilitates Frizzled endocytosis through ß-arrestin2. Co-immunoprecipitation experiments indicate that Frizzled proteins and VANG-1 form a complex, and this physical interaction requires the Frizzled cysteine-rich domain. Our work reveals a novel mechanism mediated by the PCP protein VANG-1 that downregulates Wnt signaling through Frizzled endocytosis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Polaridade Celular , Endocitose , Receptores Frizzled/metabolismo , Fosfoproteínas/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Movimento Celular , Larva/citologia , Complexos Multiproteicos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética
7.
Open Biol ; 8(10)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282660

RESUMO

Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through ß-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways. In this review, we summarize recent advances in the mechanisms of Wnt signalling in the development of axon, dendrite and synapse formation.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Sinapses/metabolismo , Proteínas Wnt/metabolismo , Animais , Axônios/química , Diferenciação Celular , Polaridade Celular , Proliferação de Células , Dendritos/química , Humanos , Modelos Animais , Sinapses/química , Proteínas Wnt/química , beta Catenina/química , beta Catenina/metabolismo
8.
Sci Rep ; 8(1): 14947, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297722

RESUMO

Chinese herbal medicines (CHMs) have been used to treat human diseases for thousands of years. Among them, Ginkgo biloba is reported to be beneficial to the nervous system and a potential treatment of neurological disorders. Since the presence of adult neural stem cells (NSCs) brings hope that the brain may heal itself, whether the effect of Ginkgo biloba is on NSCs remains elusive. In this study, we found that Ginkgo biloba extract (GBE) and one of its main ingredients, ginkgolide B (GB) promoted cell cycle exit and neuronal differentiation in NSCs derived from the postnatal subventricular zone (SVZ) of the mouse lateral ventricle. Furthermore, the administration of GB increased the nuclear level of ß-catenin and activated the canonical Wnt pathway. Knockdown of ß-catenin blocked the neurogenic effect of GB, suggesting that GB promotes neuronal differentiation through the Wnt/ß-catenin pathway. Thus, our data provide a potential mechanism underlying the therapeutic effect of GBE or GB on brain injuries and neurodegenerative disorders.


Assuntos
Ginkgolídeos/farmacologia , Lactonas/farmacologia , Ventrículos Laterais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
9.
Neuron ; 98(2): 320-334.e6, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29673481

RESUMO

Self-avoidance allows sister dendrites from the same neuron to form non-redundant coverage of the sensory territory and is important for neural circuitry functions. Here, we report an unexpected, cell-autonomous role of the Wnt-secretory factor MIG-14/Wntless in mediating dendrite self-avoidance in the C. elegans multidendritic PVD neurons. Similar findings in Drosophila suggest that this novel function of Wntless is conserved. The mig-14 mutant shows defects in dendrite self-avoidance, and ectopic MIG-14 expression triggers dendrite repulsion. Functions of dendrite self-avoidance and Wnt secretion could be mapped to distinct MIG-14 domains, indicating that these two functions of MIG-14 are genetically separable, consistent with lack of self-avoidance defects in the Wnt mutants. We further demonstrate that MIG-14 engages Wiskott-Aldrich syndrome protein (WASP)-dependent actin assembly to regulate dendrite self-avoidance. Our work expands the repertoire of self-avoidance molecules and uncovers a previously unknown, Wnt-independent function of MIG-14/Wntless.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Transporte/biossíntese , Comunicação Celular/fisiologia , Dendritos/fisiologia , Proteínas de Drosophila/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/análise , Proteínas de Transporte/análise , Dendritos/química , Proteínas de Drosophila/análise , Drosophila melanogaster , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Masculino , Transporte Proteico/fisiologia , Via de Sinalização Wnt/fisiologia
10.
PLoS Genet ; 13(4): e1006720, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28384160

RESUMO

Spatial arrangement of neurite branching is instructed by both attractive and repulsive cues. Here we show that in C. elegans, the Wnt family of secreted glycoproteins specify neurite branching sites in the PLM mechanosensory neurons. Wnts function through MIG-1/Frizzled and the planar cell polarity protein (PCP) VANG-1/Strabismus/Vangl2 to restrict the formation of F-actin patches, which mark branching sites in nascent neurites. We find that VANG-1 promotes Wnt signaling by facilitating Frizzled endocytosis and genetically acts in a common pathway with arr-1/ß-arrestin, whose mutation results in defective PLM branching and F-actin patterns similar to those in the Wnt, mig-1 or vang-1 mutants. On the other hand, the UNC-6/Netrin pathway intersects orthogonally with Wnt-PCP signaling to guide PLM branch growth along the dorsal-ventral axis. Our study provides insights for how attractive and repulsive signals coordinate to sculpt neurite branching patterns, which are critical for circuit connectivity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Receptores Frizzled/genética , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Fosfoproteínas/genética , beta-Arrestina 1/genética , Actinas/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Polaridade Celular/genética , Endocitose/genética , Netrinas , Neuritos/metabolismo , Neurônios/metabolismo , Via de Sinalização Wnt/genética
11.
Proc Natl Acad Sci U S A ; 111(46): 16568-73, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25359212

RESUMO

Neurons remodel their connectivity in response to various insults, including microtubule disruption. How neurons sense microtubule disassembly and mount remodeling responses by altering genetic programs in the soma are not well defined. Here we show that in response to microtubule disassembly, the Caenorhabditis elegans PLM neuron remodels by retracting its synaptic branch and overextending the primary neurite. This remodeling required RHGF-1, a PDZ-Rho guanine nucleotide exchange factor (PDZ-RhoGEF) that was associated with and inhibited by microtubules. Independent of the myosin light chain activation, RHGF-1 acted through Rho-dependent kinase LET-502/ROCK and activated a conserved, retrograde DLK-1 MAPK (DLK-1/dual leucine zipper kinase) pathway, which triggered synaptic branch retraction and overgrowth of the PLM neurite in a dose-dependent manner. Our data represent a neuronal remodeling paradigm during development that reshapes the neural circuit by the coordinated removal of the dysfunctional synaptic branch compartment and compensatory extension of the primary neurite.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Mecanorreceptores/fisiologia , Microtúbulos/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Animais , Axônios/ultraestrutura , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Forma Celular , Colchicina/farmacologia , Ativação Enzimática , Genes Reporter , Larva , Sistema de Sinalização das MAP Quinases/fisiologia , Mecanorreceptores/ultraestrutura , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Mutação , Neuritos/metabolismo , Neuritos/ultraestrutura , Neurônios/ultraestrutura , Paclitaxel/farmacologia , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Tato/fisiologia , Tubulina (Proteína)/deficiência , Tubulina (Proteína)/genética , Tubulina (Proteína)/fisiologia , Moduladores de Tubulina/farmacologia , Quinases Associadas a rho/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...