Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
MAGMA ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922525

RESUMO

OBJECT: To review recent advances of artificial intelligence (AI) in enhancing the efficiency and throughput of the MRI acquisition workflow in neuroimaging, including planning, sequence design, and correction of acquisition artifacts. MATERIALS AND METHODS: A comprehensive analysis was conducted on recent AI-based methods in neuro MRI acquisition. The study focused on key technological advances, their impact on clinical practice, and potential risks associated with these methods. RESULTS: The findings indicate that AI-based algorithms have a substantial positive impact on the MRI acquisition process, improving both efficiency and throughput. Specific algorithms were identified as particularly effective in optimizing acquisition steps, with reported improvements in workflow efficiency. DISCUSSION: The review highlights the transformative potential of AI in neuro MRI acquisition, emphasizing the technological advances and clinical benefits. However, it also discusses potential risks and challenges, suggesting areas for future research to mitigate these concerns and further enhance AI integration in MRI acquisition.

2.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585744

RESUMO

Microstructural tissue organization underlies the complex connectivity of the brain and controls properties of connective, muscle, and epithelial tissue. However, discerning microstructural architecture with high resolution for large fields of view remains prohibitive. We address this challenge with computational scattered light imaging (ComSLI), which exploits the anisotropic light scattering of aligned structures. Using a rotating lightsource and a high-resolution camera, ComSLI determines fiber architecture with micrometer resolution from histological sections across preparation and staining protocols. We show complex fiber architecture in brain and non-brain sections, including histological paraffin-embedded sections with various stains, and demonstrate its applicability on animal and human tissue, including disease cases with altered microstructure. ComSLI opens new avenues for investigating fiber architecture in new and archived sections across organisms, tissues, and diseases.

3.
Neuroimage ; 292: 120601, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588832

RESUMO

PURPOSE: Intravoxel incoherent motion (IVIM) is a quantitative magnetic resonance imaging (MRI) method used to quantify perfusion properties of tissue non-invasively without contrast. However, clinical applications are limited by unreliable parameter estimates, particularly for the perfusion fraction (f) and pseudodiffusion coefficient (D*). This study aims to develop a high-fidelity reconstruction for reliable estimation of IVIM parameters. The proposed method is versatile and amenable to various acquisition schemes and fitting methods. METHODS: To address current challenges with IVIM, we adapted several advanced reconstruction techniques. We used a low-rank approximation of IVIM images and temporal subspace modeling to constrain the magnetization dynamics of the bi-exponential diffusion signal decay. In addition, motion-induced phase variations were corrected between diffusion directions and b-values, facilitating the use of high SNR real-valued diffusion data. The proposed method was evaluated in simulations and in vivo brain acquisitions in six healthy subjects and six individuals with a history of SARS-CoV-2 infection and compared with the conventionally reconstructed magnitude data. Following reconstruction, IVIM parameters were estimated voxel-wise. RESULTS: Our proposed method reduced noise contamination in simulations, resulting in a 60%, 58.9%, and 83.9% reduction in the NRMSE for D, f, and D*, respectively, compared to the conventional reconstruction. In vivo, anisotropic properties of D, f, and D* were preserved with the proposed method, highlighting microvascular differences in gray matter between individuals with a history of COVID-19 and those without (p = 0.0210), which wasn't observed with the conventional reconstruction. CONCLUSION: The proposed method yielded a more reliable estimation of IVIM parameters with less noise than the conventional reconstruction. Further, the proposed method preserved anisotropic properties of IVIM parameter estimates and demonstrated differences in microvascular perfusion in COVID-affected subjects, which weren't observed with conventional reconstruction methods.


Assuntos
COVID-19 , Processamento de Imagem Assistida por Computador , Humanos , COVID-19/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Adulto , Encéfalo/diagnóstico por imagem , Movimento (Física) , Feminino , Masculino , SARS-CoV-2 , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos
4.
Magn Reson Med ; 92(1): 246-256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38469671

RESUMO

PURPOSE: To reduce the inter-scanner variability of diffusion MRI (dMRI) measures between scanners from different vendors by developing a vendor-neutral dMRI pulse sequence using the open-source vendor-agnostic Pulseq platform. METHODS: We implemented a standard EPI based dMRI sequence in Pulseq. We tested it on two clinical scanners from different vendors (Siemens Prisma and GE Premier), systematically evaluating and comparing the within- and inter-scanner variability across the vendors, using both the vendor-provided and Pulseq dMRI sequences. Assessments covered both a diffusion phantom and three human subjects, using standard error (SE) and Lin's concordance correlation to measure the repeatability and reproducibility of standard DTI metrics including fractional anisotropy (FA) and mean diffusivity (MD). RESULTS: Identical dMRI sequences were executed on both scanners using Pulseq. On the phantom, the Pulseq sequence showed more than a 2.5× reduction in SE (variability) across Siemens and GE scanners. Furthermore, Pulseq sequences exhibited markedly reduced SE in-vivo, maintaining scan-rescan repeatability while delivering lower variability in FA and MD (more than 50% reduction in cortical/subcortical regions) compared to vendor-provided sequences. CONCLUSION: The Pulseq diffusion sequence reduces the cross-scanner variability for both phantom and in-vivo data, which will benefit multi-center neuroimaging studies and improve the reproducibility of neuroimaging studies.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Anisotropia , Algoritmos , Masculino , Adulto , Feminino
5.
Magn Reson Med ; 91(5): 2028-2043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38173304

RESUMO

PURPOSE: To develop a framework that jointly estimates rigid motion and polarizing magnetic field (B0 ) perturbations ( δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ ) for brain MRI using a single navigator of a few milliseconds in duration, and to additionally allow for navigator acquisition at arbitrary timings within any type of sequence to obtain high-temporal resolution estimates. THEORY AND METHODS: Methods exist that match navigator data to a low-resolution single-contrast image (scout) to estimate either motion or δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . In this work, called QUEEN (QUantitatively Enhanced parameter Estimation from Navigators), we propose combined motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimation from a fast, tailored trajectory with arbitrary-contrast navigator data. To this end, the concept of a quantitative scout (Q-Scout) acquisition is proposed from which contrast-matched scout data is predicted for each navigator. Finally, navigator trajectories, contrast-matched scout, and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ are integrated into a motion-informed parallel-imaging framework. RESULTS: Simulations and in vivo experiments show the need to model δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ to obtain accurate motion parameters estimated in the presence of strong δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Simulations confirm that tailored navigator trajectories are needed to robustly estimate both motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Furthermore, experiments show that a contrast-matched scout is needed for parameter estimation from multicontrast navigator data. A retrospective, in vivo reconstruction experiment shows improved image quality when using the proposed Q-Scout and QUEEN estimation. CONCLUSIONS: We developed a framework to jointly estimate rigid motion parameters and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ from navigators. Combing a contrast-matched scout with the proposed trajectory allows for navigator deployment in almost any sequence and/or timing, which allows for higher temporal-resolution motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimates.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Movimento (Física) , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem
6.
Magn Reson Med ; 91(3): 987-1001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37936313

RESUMO

PURPOSE: This study aims to develop a high-efficiency and high-resolution 3D imaging approach for simultaneous mapping of multiple key tissue parameters for routine brain imaging, including T1 , T2 , proton density (PD), ADC, and fractional anisotropy (FA). The proposed method is intended for pushing routine clinical brain imaging from weighted imaging to quantitative imaging and can also be particularly useful for diffusion-relaxometry studies, which typically suffer from lengthy acquisition time. METHODS: To address challenges associated with diffusion weighting, such as shot-to-shot phase variation and low SNR, we integrated several innovative data acquisition and reconstruction techniques. Specifically, we used M1-compensated diffusion gradients, cardiac gating, and navigators to mitigate phase variations caused by cardiac motion. We also introduced a data-driven pre-pulse gradient to cancel out eddy currents induced by diffusion gradients. Additionally, to enhance image quality within a limited acquisition time, we proposed a data-sharing joint reconstruction approach coupled with a corresponding sequence design. RESULTS: The phantom and in vivo studies indicated that the T1 and T2 values measured by the proposed method are consistent with a conventional MR fingerprinting sequence and the diffusion results (including diffusivity, ADC, and FA) are consistent with the spin-echo EPI DWI sequence. CONCLUSION: The proposed method can achieve whole-brain T1 , T2 , diffusivity, ADC, and FA maps at 1-mm isotropic resolution within 10 min, providing a powerful tool for investigating the microstructural properties of brain tissue, with potential applications in clinical and research settings.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Conceitos Matemáticos
7.
Magn Reson Med ; 91(6): 2278-2293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38156945

RESUMO

PURPOSE: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. METHODS: We developed 3D visualization of short transverse relaxation time component (ViSTa)-MRF, which combined ViSTa technique with MR fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multicompartment fitting that could introduce bias and/or noise from additional assumptions or priors. RESULTS: The in vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in vivo results of 1 mm- and 0.66 mm-isotropic resolution datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30× slower with lower SNR. Furthermore, we applied the proposed method to enable 5-min whole-brain 1 mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. CONCLUSIONS: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1 and 0.66 mm isotropic resolution in 5 and 15 min, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.


Assuntos
Bainha de Mielina , Água , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
8.
Nat Methods ; 20(12): 2048-2057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012321

RESUMO

To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Cabeça , Neuroimagem , Razão Sinal-Ruído
9.
Neuroimage ; 275: 120168, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187364

RESUMO

PURPOSE: To develop a high-fidelity diffusion MRI acquisition and reconstruction framework with reduced echo-train-length for less T2* image blurring compared to typical highly accelerated echo-planar imaging (EPI) acquisitions at sub-millimeter isotropic resolution. METHODS: We first proposed a circular-EPI trajectory with partial Fourier sampling on both the readout and phase-encoding directions to minimize the echo-train-length and echo time. We then utilized this trajectory in an interleaved two-shot EPI acquisition with reversed phase-encoding polarity, to aid in the correction of off-resonance-induced image distortions and provide complementary k-space coverage in the missing partial Fourier regions. Using model-based reconstruction with structured low-rank constraint and smooth phase prior, we corrected the shot-to-shot phase variations across the two shots and recover the missing k-space data. Finally, we combined the proposed acquisition/reconstruction framework with an SNR-efficient RF-encoded simultaneous multi-slab technique, termed gSlider, to achieve high-fidelity 720 µm and 500 µm isotropic resolution in-vivo diffusion MRI. RESULTS: Both simulation and in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide distortion-corrected diffusion imaging at the mesoscale with markedly reduced T2*-blurring. The in-vivo results of 720 µm and 500 µm datasets show high-fidelity diffusion images with reduced image blurring and echo time using the proposed approaches. CONCLUSIONS: The proposed method provides high-quality distortion-corrected diffusion-weighted images with ∼40% reduction in the echo-train-length and T2* blurring at 500µm-isotropic-resolution compared to standard multi-shot EPI.


Assuntos
Encéfalo , Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Simulação por Computador
10.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034586

RESUMO

Introduction: Spatio-temporal MRI methods enable whole-brain multi-parametric mapping at ultra-fast acquisition times through efficient k-space encoding, but can have very long reconstruction times, which limit their integration into clinical practice. Deep learning (DL) is a promising approach to accelerate reconstruction, but can be computationally intensive to train and deploy due to the large dimensionality of spatio-temporal MRI. DL methods also need large training data sets and can produce results that don't match the acquired data if data consistency is not enforced. The aim of this project is to reduce reconstruction time using DL whilst simultaneously limiting the risk of deep learning induced hallucinations, all with modest hardware requirements. Methods: Deep Learning Initialized Compressed Sensing (Deli-CS) is proposed to reduce the reconstruction time of iterative reconstructions by "kick-starting" the iterative reconstruction with a DL generated starting point. The proposed framework is applied to volumetric multi-axis spiral projection MRF that achieves whole-brain T1 and T2 mapping at 1-mm isotropic resolution for a 2-minute acquisition. First, the traditional reconstruction is optimized from over two hours to less than 40 minutes while using more than 90% less RAM and only 4.7 GB GPU memory, by using a memory-efficient GPU implementation. The Deli-CS framework is then implemented and evaluated against the above reconstruction. Results: Deli-CS achieves comparable reconstruction quality with 50% fewer iterations bringing the full reconstruction time to 20 minutes. Conclusion: Deli-CS reduces the reconstruction time of subspace reconstruction of volumetric spatio-temporal acquisitions by providing a warm start to the iterative reconstruction algorithm.

11.
IEEE Trans Med Imaging ; 42(5): 1522-1531, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015710

RESUMO

The Shinnar-Le-Roux (SLR) algorithm is widely used to design frequency selective pulses with large flip angles. We improve its design process to generate pulses with lower energy (by as much as 26%) and more accurate phase profiles. Concretely, the SLR algorithm consists of two steps: (1) an invertible transform between frequency selective pulses and polynomial pairs that represent Cayley-Klein (CK) parameters and (2) the design of the CK polynomial pair to match the desired magnetization profiles. Because the CK polynomial pair is bi-linearly coupled, the original algorithm sequentially solves for each polynomial instead of jointly. This results in sub-optimal pulses. Instead, we leverage a convex relaxation technique, commonly used for low rank matrix recovery, to address the bi-linearity. Our numerical experiments show that the resulting pulses are almost always globally optimal in practice. For slice excitation, the proposed algorithm results in more accurate linear phase profiles. And in general the improved pulses have lower energy than the original SLR pulses.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Frequência Cardíaca , Imagens de Fantasmas
12.
Magn Reson Med ; 89(5): 1961-1974, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36705076

RESUMO

PURPOSE: This work aims to develop a novel distortion-free 3D-EPI acquisition and image reconstruction technique for fast and robust, high-resolution, whole-brain imaging as well as quantitative T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. METHODS: 3D Blip-up and -down acquisition (3D-BUDA) sequence is designed for both single- and multi-echo 3D gradient recalled echo (GRE)-EPI imaging using multiple shots with blip-up and -down readouts to encode B0 field map information. Complementary k-space coverage is achieved using controlled aliasing in parallel imaging (CAIPI) sampling across the shots. For image reconstruction, an iterative hard-thresholding algorithm is employed to minimize the cost function that combines field map information informed parallel imaging with the structured low-rank constraint for multi-shot 3D-BUDA data. Extending 3D-BUDA to multi-echo imaging permits T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. For this, we propose constructing a joint Hankel matrix along both echo and shot dimensions to improve the reconstruction. RESULTS: Experimental results on in vivo multi-echo data demonstrate that, by performing joint reconstruction along with both echo and shot dimensions, reconstruction accuracy is improved compared to standard 3D-BUDA reconstruction. CAIPI sampling is further shown to enhance image quality. For T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping, parameter values from 3D-Joint-CAIPI-BUDA and reference multi-echo GRE are within limits of agreement as quantified by Bland-Altman analysis. CONCLUSIONS: The proposed technique enables rapid 3D distortion-free high-resolution imaging and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. Specifically, 3D-BUDA enables 1-mm isotropic whole-brain imaging in 22 s at 3T and 9 s on a 7T scanner. The combination of multi-echo 3D-BUDA with CAIPI acquisition and joint reconstruction enables distortion-free whole-brain T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping in 47 s at 1.1 × 1.1 × 1.0 mm3 resolution.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Imagem Ecoplanar/métodos , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Algoritmos
13.
Hum Brain Mapp ; 44(6): 2209-2223, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36629336

RESUMO

Quantitative assessment of brain myelination has gained attention for both research and diagnosis of neurological diseases. However, conventional pulse sequences cannot directly acquire the myelin-proton signals due to its extremely short T2 and T2* values. To obtain the myelin-proton signals, dedicated short T2 acquisition techniques, such as ultrashort echo time (UTE) imaging, have been introduced. However, it remains challenging to isolate the myelin-proton signals from tissues with longer T2. In this article, we extended our previous two-dimensional ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) with dual-echo acquisition to three dimensional (3D). Given a relatively low proton density (PD) of myelin-proton, we utilized Cramér-Rao Lower Bound to encode myelin-proton with the maximal SNR efficiency for optimizing the MR fingerprinting design, in order to improve the sensitivity of the sequence to myelin-proton. In addition, with a second echo of approximately 3 ms, myelin-water component can be also captured. A myelin-tissue (myelin-proton and myelin-water) fraction mapping can be thus calculated. The optimized 3D UTE-MRF with dual-echo acquisition is tested in simulations, physical phantom and in vivo studies of both healthy subjects and multiple sclerosis patients. The results suggest that the rapidly decayed myelin-proton and myelin-water signal can be depicted with UTE signals of our method at clinically relevant resolution (1.8 mm isotropic) in 15 min. With its good sensitivity to myelin loss in multiple sclerosis patients demonstrated, our method for the whole brain myelin-tissue fraction mapping in clinical friendly scan time has the potential for routine clinical imaging.


Assuntos
Esclerose Múltipla , Bainha de Mielina , Humanos , Prótons , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Água , Espectroscopia de Ressonância Magnética , Imageamento Tridimensional/métodos
14.
ArXiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38196746

RESUMO

Purpose: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. Methods: We developed 3D ViSTa-MRF, which combined Visualization of Short Transverse relaxation time component (ViSTa) technique with MR Fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multi-compartment fitting that could introduce bias and/or noise from additional assumptions or priors. Results: The in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in-vivo results of 1mm- and 0.66mm-iso datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30x slower with lower SNR. Furthermore, we applied the proposed method to enable 5-minute whole-brain 1mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. Conclusions: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1mm and 0.66mm isotropic resolution in 5 and 15 minutes, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.

16.
Magn Reson Med ; 88(3): 1180-1197, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678236

RESUMO

PURPOSE: To introduce wave-encoded acquisition and reconstruction techniques for highly accelerated EPI with reduced g-factor penalty and image artifacts. THEORY AND METHODS: Wave-EPI involves application of sinusoidal gradients during the EPI readout, which spreads the aliasing in all spatial directions, thereby taking better advantage of 3D coil sensitivity profiles. The amount of voxel spreading that can be achieved by the wave gradients during the short EPI readout period is constrained by the slew rate of the gradient coils and peripheral nerve stimulation monitor. We propose to use a "half-cycle" sinusoidal gradient to increase the amount of voxel spreading that can be achieved while respecting the slew and stimulation constraints. Extending wave-EPI to multi-shot acquisition minimizes geometric distortion and voxel blurring at high in-plane resolutions, while structured low-rank regularization mitigates shot-to-shot phase variations. To address gradient imperfections, we propose to use different point spread functions for the k-space lines with positive and negative polarities, which are calibrated with a FLEET-based reference scan. RESULTS: Wave-EPI enabled whole-brain single-shot gradient-echo (GE) and multi-shot spin-echo (SE) EPI acquisitions at high acceleration factors at 3T and was combined with g-Slider encoding to boost the SNR level in 1 mm isotropic diffusion imaging. Relative to blipped-CAIPI, wave-EPI reduced average and maximum g-factors by up to 1.21- and 1.37-fold at Rin × Rsms  = 3 × 3, respectively. CONCLUSION: Wave-EPI allows highly accelerated single- and multi-shot EPI with reduced g-factor and artifacts and may facilitate clinical and neuroscientific applications of EPI by improving the spatial and temporal resolution in functional and diffusion imaging.


Assuntos
Imagem Ecoplanar , Aumento da Imagem , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
17.
Magn Reson Med ; 88(2): 633-650, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35436357

RESUMO

PURPOSE: To rapidly obtain high resolution T2 , T2 *, and quantitative susceptibility mapping (QSM) source separation maps with whole-brain coverage and high geometric fidelity. METHODS: We propose Blip Up-Down Acquisition for Spin And Gradient Echo imaging (BUDA-SAGE), an efficient EPI sequence for quantitative mapping. The acquisition includes multiple T2 *-, T2 '-, and T2 -weighted contrasts. We alternate the phase-encoding polarities across the interleaved shots in this multi-shot navigator-free acquisition. A field map estimated from interim reconstructions was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to eliminate distortion. A self-supervised neural network (NN), MR-Self2Self (MR-S2S), was used to perform denoising to boost SNR. Using Slider encoding allowed us to reach 1 mm isotropic resolution by performing super-resolution reconstruction on volumes acquired with 2 mm slice thickness. Quantitative T2 (=1/R2 ) and T2 * (=1/R2 *) maps were obtained using Bloch dictionary matching on the reconstructed echoes. QSM was estimated using nonlinear dipole inversion on the gradient echoes. Starting from the estimated R2 /R2 * maps, R2 ' information was derived and used in source separation QSM reconstruction, which provided additional para- and dia-magnetic susceptibility maps. RESULTS: In vivo results demonstrate the ability of BUDA-SAGE to provide whole-brain, distortion-free, high-resolution, multi-contrast images and quantitative T2 /T2 * maps, as well as yielding para- and dia-magnetic susceptibility maps. Estimated quantitative maps showed comparable values to conventional mapping methods in phantom and in vivo measurements. CONCLUSION: BUDA-SAGE acquisition with self-supervised denoising and Slider encoding enables rapid, distortion-free, whole-brain T2 /T2 * mapping at 1 mm isotropic resolution under 90 s.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Fenômenos Magnéticos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
18.
Magn Reson Med ; 88(1): 133-150, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35199877

RESUMO

PURPOSE: To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. RESULTS: The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. CONCLUSIONS: The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Estudos Retrospectivos
20.
Magn Reson Med ; 87(2): 781-790, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34480768

RESUMO

PURPOSE: A major obstacle to the clinical implementation of quantitative MR is the lengthy acquisition time required to derive multi-contrast parametric maps. We sought to reduce the acquisition time for QSM and macromolecular tissue volume by acquiring both contrasts simultaneously by leveraging their redundancies. The joint virtual coil concept with GRAPPA (JVC-GRAPPA) was applied to reduce acquisition time further. METHODS: Three adult volunteers were imaged on a 3 Tesla scanner using a multi-echo 3D GRE sequence acquired at 3 head orientations. Macromolecular tissue volume, QSM, R2∗ , T1 , and proton density maps were reconstructed. The same sequence (GRAPPA R = 4) was performed in subject 1 with a single head orientation for comparison. Fully sampled data was acquired in subject 2, from which retrospective undersampling was performed (R = 6 GRAPPA and R = 9 JVC-GRAPPA). Prospective undersampling was performed in subject 3 (R = 6 GRAPPA and R = 9 JVC-GRAPPA) using gradient blips to shift k-space sampling in later echoes. RESULTS: Subject 1's multi-orientation and single-orientation macromolecular tissue volume maps were not significantly different based on RMSE. For subject 2, the retrospectively undersampled JVC-GRAPPA and GRAPPA generated similar results as fully sampled data. This approach was validated with the prospectively undersampled images in subject 3. Using QSM, R2∗ , and macromolecular tissue volume, the contributions of myelin and iron content to susceptibility were estimated. CONCLUSION: We have developed a novel strategy to simultaneously acquire data for the reconstruction of 5 intrinsically coregistered 1-mm isotropic resolution multi-parametric maps, with a scan time of 6 min using JVC-GRAPPA.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Estudos Prospectivos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...