Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(4): 1192-1204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212372

RESUMO

At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells. We selectively deleted the NT3-encoding Ntf3 gene in the DG during the first two postnatal weeks to generate a Ntf3 conditional knockout (Ntf3-cKO). Ntf3-cKO mice of both sexes had normal hippocampal cytoarchitecture but displayed impairments in contextual memory, spatial reference memory, and nest building. Furthermore, male Ntf3-cKO mice exhibited anxiety-like behaviors, whereas female Ntf3-cKO showed some mild depressive symptoms. As MF-CA3 synapses are essential for encoding of contextual memory, we examined synaptic transmission at these synapses using ex vivo electrophysiological recordings. We found that Ntf3-cKO mice had impaired basal synaptic transmission due to deficits in excitatory postsynaptic currents mediated by AMPA receptors but normal presynaptic function and intrinsic excitability of CA3 pyramidal neurons. Consistent with this selective postsynaptic deficit, Ntf3-cKO mice had fewer and smaller thorny excrescences on proximal apical dendrites of CA3 neurons and lower GluR1 levels in the stratum lucidum area where MF-CA3 synapses reside but normal MF terminals, compared with control mice. Thus, our study indicates that NT3 expressed in the dentate gyrus is crucial for the postsynaptic structure and function of MF-CA3 synapses and hippocampal-dependent memory.


Assuntos
Região CA3 Hipocampal , Giro Denteado , Camundongos Knockout , Fibras Musgosas Hipocampais , Neurotrofina 3 , Sinapses , Animais , Giro Denteado/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Camundongos , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Masculino , Feminino , Região CA3 Hipocampal/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Transmissão Sináptica/fisiologia , Cognição/fisiologia , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Memória/fisiologia , Receptores de AMPA/metabolismo
2.
SLAS Discov ; 28(3): 88-94, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842668

RESUMO

Deficiencies in brain-derived neurotrophic factor (BDNF) have been linked to several brain disorders, making compounds that can boost neuronal BDNF synthesis attractive as potential therapeutics. However, a sensitive and quantitative BDNF assay for high-throughput screening (HTS) is still missing. Here we report the generation of a new mouse Bdnf allele, BdnfNLuc, in which the sequence encoding nano luciferase (NLuc) is inserted into the Bdnf locus immediately before the stop codon so that the allele will produce a BDNF-NLuc fusion protein. BDNF-NLuc protein appears to function like BDNF as BdnfNLuc/NLuc homozygous mice grew and behaved almost normally. We were able to establish and optimize cultures of cortical and hippocampal BdnfNLuc/+ neurons isolated from mouse embryos in 384-well plates. We used the cultures as a phenotypic assay to detect the ability of 10 mM KCl to stimulate BDNF synthesis and achieved a reproducible Z' factor > 0.50 for the assay, a measure considered suitable for HTS. We successfully scaled up the assay to screen the 1280-compound LOPAC library (Library of Pharmacologically Active Compounds). The screen identified several BDNF-boosting compounds, one of which is Bay K8644, a L-type voltage-gated calcium channel (L-VGCC) agonist, which was previously shown to stimulate BDNF synthesis. These results indicate that our phenotypic neuronal assay is ready for HTS to identify novel BDNF-boosting compounds.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ensaios de Triagem em Larga Escala , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios/metabolismo , Canais de Cálcio Tipo L/metabolismo , Encéfalo/metabolismo
3.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36631165

RESUMO

High prevalence of obesity is attributable in part to consumption of highly palatable, fat-rich foods. However, the mechanism controlling dietary fat intake is largely unknown. In this study we investigated the role of brain-derived neurotrophic factor (BDNF) in the control of dietary fat intake in a mouse model that mimics the common human Val-to-Met (Val66Met) polymorphism that impairs BDNF release via the regulated secretory pathway. BdnfMet/Met mice gained weight much faster than wild-type (WT) mice and developed severe obesity due to marked hyperphagia when they were fed HFD. Hyperphagia in these mice worsened when the fat content in their diet was increased. Conversely, mice lacking leptin exhibited similar hyperphagia on chow and HFD. When 2 diets were provided simultaneously, WT and BdnfMet/Met mice showed a comparable preference for the more palatable diet rich in either fat or sucrose, indicating that increased hyperphagia on fat-rich diets in BdnfMet/Met mice is not due to enhanced hedonic drive. In support of this interpretation, WT and BdnfMet/Met mice increased calorie intake to a similar extent during the first day after chow was switched to HFD; however, WT mice decreased HFD intake faster than BdnfMet/Met mice in subsequent days. Furthermore, we found that refeeding after fasting or nocturnal feeding with HFD activated TrkB more strongly than with chow in the hypothalamus of WT mice, whereas TrkB activation under these 2 conditions was greatly attenuated in BdnfMet/Met mice. These results indicate that satiety factors generated during HFD feeding induce BDNF release to suppress excess dietary fat intake.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hiperfagia , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dieta , Dieta Hiperlipídica , Gorduras na Dieta/farmacologia , Hiperfagia/genética , Obesidade/genética
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468645

RESUMO

Mutations in the TrkB neurotrophin receptor lead to profound obesity in humans, and expression of TrkB in the dorsomedial hypothalamus (DMH) is critical for maintaining energy homeostasis. However, the functional implications of TrkB-fexpressing neurons in the DMH (DMHTrkB) on energy expenditure are unclear. Additionally, the neurocircuitry underlying the effect of DMHTrkB neurons on energy homeostasis has not been explored. In this study, we show that activation of DMHTrkB neurons leads to a robust increase in adaptive thermogenesis and energy expenditure without altering heart rate or blood pressure, while silencing DMHTrkB neurons impairs thermogenesis. Furthermore, we reveal neuroanatomically and functionally distinct populations of DMHTrkB neurons that regulate food intake or thermogenesis. Activation of DMHTrkB neurons projecting to the raphe pallidus (RPa) stimulates thermogenesis and increased energy expenditure, whereas DMHTrkB neurons that send collaterals to the paraventricular hypothalamus (PVH) and preoptic area (POA) inhibit feeding. Together, our findings provide evidence that DMHTrkB neuronal activity plays an important role in regulating energy expenditure and delineate distinct neurocircuits that underly the separate effects of DMHTrkB neuronal activity on food intake and thermogenesis.


Assuntos
Regulação do Apetite/genética , Metabolismo Energético/genética , Glicoproteínas de Membrana/genética , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Proteínas Tirosina Quinases/genética , Termogênese/genética , Animais , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Núcleo Pálido da Rafe/citologia , Núcleo Pálido da Rafe/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Área Pré-Óptica/citologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Proteína Vermelha Fluorescente
5.
Nat Commun ; 11(1): 1729, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265438

RESUMO

The TrkB receptor is critical for the control of energy balance, as mutations in its gene (NTRK2) lead to hyperphagia and severe obesity. The main neural substrate mediating the appetite-suppressing activity of TrkB, however, remains unknown. Here, we demonstrate that selective Ntrk2 deletion within paraventricular hypothalamus (PVH) leads to severe hyperphagic obesity. Furthermore, chemogenetic activation or inhibition of TrkB-expressing PVH (PVHTrkB) neurons suppresses or increases food intake, respectively. PVHTrkB neurons project to multiple brain regions, including ventromedial hypothalamus (VMH) and lateral parabrachial nucleus (LPBN). We find that PVHTrkB neurons projecting to LPBN are distinct from those to VMH, yet Ntrk2 deletion in PVH neurons projecting to either VMH or LPBN results in hyperphagia and obesity. Additionally, TrkB activation with BDNF increases firing of these PVH neurons. Therefore, TrkB signaling is a key regulator of a previously uncharacterized neuronal population within the PVH that impinges upon multiple circuits to govern appetite.


Assuntos
Hiperfagia/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Apetite/genética , Comportamento Alimentar/fisiologia , Feminino , Hiperfagia/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiopatologia , Proteínas Tirosina Quinases/genética , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo
6.
Nat Commun ; 11(1): 1797, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286273

RESUMO

Mutations that inactivate negative translation regulators cause autism spectrum disorders (ASD), which predominantly affect males and exhibit social interaction and communication deficits and repetitive behaviors. However, the cells that cause ASD through elevated protein synthesis resulting from these mutations remain unknown. Here we employ conditional overexpression of translation initiation factor eIF4E to increase protein synthesis in specific brain cells. We show that exaggerated translation in microglia, but not neurons or astrocytes, leads to autism-like behaviors in male mice. Although microglial eIF4E overexpression elevates translation in both sexes, it only increases microglial density and size in males, accompanied by microglial shift from homeostatic to a functional state with enhanced phagocytic capacity but reduced motility and synapse engulfment. Consequently, cortical neurons in the mice have higher synapse density, neuroligins, and excitation-to-inhibition ratio compared to control mice. We propose that functional perturbation of male microglia is an important cause for sex-biased ASD.


Assuntos
Transtorno Autístico/metabolismo , Comportamento Animal , Microglia/metabolismo , Biossíntese de Proteínas , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Feminino , Perfilação da Expressão Gênica , Genótipo , Homeostase , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fagocitose , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/ultraestrutura , Comportamento Social , Sinapses/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(8): 3256-3261, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718415

RESUMO

Genetic evidence indicates that brain-derived neurotrophic factor (BDNF) signaling through the TrkB receptor plays a critical role in the control of energy balance. Mutations in the BDNF or the TrkB-encoding NTRK2 gene have been found to cause severe obesity in humans and mice. However, it remains unknown which brain neurons express TrkB to control body weight. Here, we report that TrkB-expressing neurons in the dorsomedial hypothalamus (DMH) regulate food intake. We found that the DMH contains both glutamatergic and GABAergic TrkB-expressing neurons, some of which also express the leptin receptor (LepR). As revealed by Fos immunohistochemistry, a significant number of TrkB-expressing DMH (DMHTrkB) neurons were activated upon either overnight fasting or after refeeding. Chemogenetic activation of DMHTrkB neurons strongly suppressed feeding in the dark cycle when mice are physiologically hungry, whereas chemogenetic inhibition of DMHTrkB neurons greatly promoted feeding in the light cycle when mice are physiologically satiated, without affecting feeding in the dark cycle. Neuronal tracing revealed that DMHTrkB neurons do not innervate neurons expressing agouti-related protein in the arcuate nucleus, indicating that DMHTrkB neurons are distinct from previously identified LepR-expressing GABAergic DMH neurons that suppress feeding. Furthermore, selective Ntrk2 deletion in the DMH of adult mice led to hyperphagia, reduced energy expenditure, and obesity. Thus, our data show that DMHTrkB neurons are a population of neurons that are necessary and sufficient to suppress appetite and maintain physiological satiation. Pharmacological activation of these neurons could be a therapeutic intervention for the treatment of obesity.


Assuntos
Ingestão de Alimentos/genética , Metabolismo Energético/genética , Glicoproteínas de Membrana/genética , Obesidade/genética , Proteínas Tirosina Quinases/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Hipotálamo/metabolismo , Camundongos , Obesidade/tratamento farmacológico , Obesidade/patologia , Fotoperíodo , Receptores para Leptina
8.
Cell Metab ; 29(4): 917-931.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30661931

RESUMO

Anxiety disorders are associated with body weight changes in humans. However, the mechanisms underlying anxiety-induced weight changes remain poorly understood. Using Emx1Cre/+ mice, we deleted the gene for brain-derived neurotrophic factor (BDNF) in the cortex, hippocampus, and some amygdalar subregions. The resulting mutant mice displayed impaired GABAergic transmission and elevated anxiety. They were leaner when fed either a chow diet or a high-fat diet, owing to higher sympathetic activity, basal metabolic rate, brown adipocyte thermogenesis, and beige adipocyte formation, compared to control mice. BDNF re-expression in the amygdala rescued the anxiety and metabolic phenotypes in mutant mice. Conversely, anxiety induced by amygdala-specific Bdnf deletion or administration of an inverse GABAA receptor agonist increased energy expenditure. These results reveal that increased activities in anxiogenic circuits can reduce body weight by promoting adaptive thermogenesis and basal metabolism via the sympathetic nervous system and suggest that amygdalar GABAergic neurons are a link between anxiety and metabolic dysfunction.


Assuntos
Ansiolíticos/farmacologia , Bromazepam/farmacologia , Carbolinas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Ansiolíticos/administração & dosagem , Peso Corporal/efeitos dos fármacos , Bromazepam/administração & dosagem , Carbolinas/administração & dosagem , Dieta , Camundongos , Camundongos Endogâmicos , Obesidade/induzido quimicamente , Obesidade/metabolismo
9.
Mol Metab ; 4(6): 471-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26042201

RESUMO

OBJECTIVE: Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development, and the Bdnf gene produces two populations of transcripts with either a short or long 3' untranslated region (3' UTR). Deficiencies in BDNF signaling have been shown to cause severe obesity in humans; however, it remains unknown how BDNF signaling impacts the organization of neuronal circuits that control energy balance. METHODS: We examined the role of BDNF on survival, axonal projections, and synaptic inputs of neurons in the arcuate nucleus (ARH), a structure critical for the control of energy balance, using Bdnf (klox/klox) mice, which lack long 3' UTR Bdnf mRNA and develop severe hyperphagic obesity. RESULTS: We found that a small fraction of neurons that express the receptor for BDNF, TrkB, also expressed proopiomelanocortin (POMC) or neuropeptide Y (NPY)/agouti-related protein (AgRP) in the ARH. Bdnf(klox/klox) mice had normal numbers of POMC, NPY, and TrkB neurons in the ARH; however, retrograde labeling revealed a drastic reduction in the number of ARH axons that project to the paraventricular hypothalamus (PVH) in these mice. In addition, fewer POMC and AgRP axons were found in the dorsomedial hypothalamic nucleus (DMH) and the lateral part of PVH, respectively, in Bdnf (klox/klox) mice. Using immunohistochemistry, we examined the impact of BDNF deficiency on inputs to ARH neurons. We found that excitatory inputs onto POMC and NPY neurons were increased and decreased, respectively, in Bdnf (klox/klox) mice, likely due to a compensatory response to marked hyperphagia displayed by the mutant mice. CONCLUSION: This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons.

10.
Cell Metab ; 22(1): 175-88, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26073495

RESUMO

Brain-derived neurotrophic factor (BDNF) is a key regulator of energy balance; however, its underlying mechanism remains unknown. By analyzing BDNF-expressing neurons in paraventricular hypothalamus (PVH), we have uncovered neural circuits that control energy balance. The Bdnf gene in the PVH was mostly expressed in previously undefined neurons, and its deletion caused hyperphagia, reduced locomotor activity, impaired thermogenesis, and severe obesity. Hyperphagia and reduced locomotor activity were associated with Bdnf deletion in anterior PVH, whereas BDNF neurons in medial and posterior PVH drive thermogenesis by projecting to spinal cord and forming polysynaptic connections to brown adipose tissues. Furthermore, BDNF expression in the PVH was increased in response to cold exposure, and its ablation caused atrophy of sympathetic preganglionic neurons. Thus, BDNF neurons in anterior PVH control energy intake and locomotor activity, whereas those in medial and posterior PVH promote thermogenesis by releasing BDNF into spinal cord to boost sympathetic outflow.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metabolismo Energético , Comportamento Alimentar , Hipotálamo/citologia , Hipotálamo/fisiologia , Neurônios/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Deleção de Genes , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipotálamo/patologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Termogênese
11.
Mol Metab ; 2(4): 491-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24327964

RESUMO

Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB (tropomyosin receptor kinase B), are widely expressed in the brain where they regulate a wide variety of biological processes, including energy homeostasis. However, the specific population(s) of TrkB-expressing neurons through which BDNF governs energy homeostasis remain(s) to be determined. Using the Cre-loxP recombination system, we deleted the mouse TrkB gene in RGS9-2-expressing cells. In this mouse mutant, TrkB expression was abolished in several hypothalamic nuclei, including arcuate nucleus, dorsomedial hypothalamus, and lateral hypothalamus. TrkB expression was also abolished in a small number of cells in other brain regions, including the cerebral cortex and striatum. The mutant animals developed hyperphagic obesity with normal energy expenditure. Despite hyperglycemia under fed conditions, these animals exhibited normal fasting blood glucose levels and normal glucose tolerance. These results suggest that BDNF regulates energy homeostasis in part through TrkB-expressing neurons in the hypothalamus.

12.
J Neurosci ; 32(41): 14318-30, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055503

RESUMO

Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type (WT) mice, but not from Bdnf(klox/klox) mice where the long 3' untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated release of dendritic BDNF translated from long 3' UTR Bdnf mRNA in cultured hippocampal neurons, but not from short 3' UTR Bdnf mRNA. Bdnf(klox/klox) mice exhibited reduced expression of glutamic acid decarboxylase 65 (a GABA synthase), increased proliferation of progenitor cells, and impaired differentiation and maturation of newborn neurons in the SGZ. These deficits in adult neurogenesis were rescued with administration of phenobarbital, an enhancer of GABA(A) receptor activity. Furthermore, we observed similar neurogenesis deficits in mice where the receptor for BDNF, TrkB, was selectively abolished in parvalbumin (PV)-expressing GABAergic interneurons. Thus, our data suggest that locally synthesized BDNF in dendrites of granule cells promotes differentiation and maturation of progenitor cells in the SGZ by enhancing GABA release, at least in part, from PV-expressing GABAergic interneurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Transmissão Sináptica/genética , Regulação para Cima/genética , Ácido gama-Aminobutírico/biossíntese , Fatores Etários , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
13.
Nat Med ; 18(4): 564-71, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426422

RESUMO

Mutations in the Bdnf gene, which produces transcripts with either short or long 3' untranslated regions (3' UTRs), cause human obesity; however, the precise role of brain-derived neurotrophic factor (BDNF) in the regulation of energy balance is unknown. Here we show the relationship between Bdnf mRNA with a long 3' UTR (long 3' UTR Bdnf mRNA), leptin, neuronal activation and body weight. We found that long 3' UTR Bdnf mRNA was enriched in the dendrites of hypothalamic neurons and that insulin and leptin could stimulate its translation in dendrites. Furthermore, mice harboring a truncated long Bdnf 3' UTR developed severe hyperphagic obesity, which was completely reversed by viral expression of long 3' UTR Bdnf mRNA in the hypothalamus. In these mice, the ability of leptin to activate hypothalamic neurons and inhibit food intake was compromised despite normal activation of leptin receptors. These results reveal a novel mechanism linking leptin action to BDNF expression during hypothalamic-mediated regulation of body weight, while also implicating dendritic protein synthesis in this process.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Dendritos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Leptina/farmacologia , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Fatores Etários , Análise de Variância , Animais , Peso Corporal/genética , Células Cultivadas , Dendritos/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipotálamo/citologia , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/genética , Obesidade/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor de Insulina/metabolismo , Receptor trkB/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução Genética
14.
Brain Res ; 1432: 7-14, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22137655

RESUMO

Insulin modulates N-methyl-d-aspartate (NMDA) receptors in the CNS and potentiates recombinant NMDA receptor currents in Xenopus oocytes. We have previously found that insulin's potentiation of NMDA receptor currents in oocytes occurs in a subunit specific manner and via phosphorylation of specific C-terminal sites by protein tyrosine kinases (PTKs) and C-type protein kinases (PKCs). Insulin-mediated current potentiation of receptors containing the NR2A subunit occurs solely through the activation of PKCs. Activation of phosphoinositide 3-kinase (PI 3-kinase) is known to trigger many insulin-stimulated signaling pathways, and we show here that it lies at a critical step in the insulin-mediated potentiation of NMDA receptor currents. Incubation with the PI 3-kinase inhibitor wortmannin eliminates insulin potentiation of NMDA receptor currents in the oocytes. Atypical isoforms of PKC are known to be activated downstream in the insulin signaling pathway via activation of PI 3-kinase. We demonstrate that the atypical isoform PKC zeta (PKCζ) has a role in insulin-stimulated current potentiation of NR2A-containing NMDA receptors using an isoform-specific pseudosubstrate inhibitor of PKCζ.


Assuntos
Insulina/fisiologia , Oócitos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteína Quinase C/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Androstadienos/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Feminino , Oócitos/efeitos dos fármacos , Oócitos/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Wortmanina , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 108(4): 1669-74, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21205893

RESUMO

In the peripheral nervous system, target tissues control the final size of innervating neuronal populations by producing limited amounts of survival-promoting neurotrophic factors during development. However, it remains largely unknown if the same principle works to regulate the size of neuronal populations in the developing brain. Here we show that neurotrophin signaling mediated by the TrkB receptor controls striatal size by promoting the survival of developing medium-sized spiny neurons (MSNs). Selective deletion of the gene for the TrkB receptor in striatal progenitors, using the Dlx5/6-Cre transgene, led to a hindpaw-clasping phenotype and a 50% loss of MSNs without affecting striatal interneurons. This loss resulted mainly from increased apoptosis of newborn MSNs within their birthplace, the lateral ganglionic eminence. Among MSNs, those expressing the dopamine receptor D2 (DRD2) were most affected, as indicated by a drastic loss of these neurons and specific down-regulation of the DRD2 and enkephalin. This specific phenotype of mutant animals is likely due to preferential TrkB expression in DRD2 MSNs. These findings suggest that neurotrophins can control the size of neuronal populations in the brain by promoting the survival of newborn neurons before they migrate to their final destinations.


Assuntos
Corpo Estriado/metabolismo , Neurônios/metabolismo , Receptor trkB/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Contagem de Células , Corpo Estriado/citologia , Corpo Estriado/crescimento & desenvolvimento , Regulação para Baixo , Encefalinas/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/citologia , Receptor trkB/genética , Receptores de Dopamina D2/metabolismo , Fatores de Tempo
16.
Cell ; 134(1): 175-87, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614020

RESUMO

The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions. The short 3' UTR mRNAs are restricted to somata, whereas the long 3' UTR mRNAs are also localized in dendrites. In a mouse mutant where the long 3' UTR is truncated, dendritic targeting of BDNF mRNAs is impaired. There is little BDNF in hippocampal dendrites despite normal levels of total BDNF protein. This mutant exhibits deficits in pruning and enlargement of dendritic spines, as well as selective impairment in long-term potentiation in dendrites, but not somata, of hippocampal neurons. These results provide insights into local and dendritic actions of BDNF and reveal a mechanism for differential regulation of subcellular functions of proteins.


Assuntos
Regiões 3' não Traduzidas/análise , Regiões 3' não Traduzidas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Animais , Dendritos/química , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Neurônios/citologia , Poliadenilação , Biossíntese de Proteínas , Receptor trkB/análise
17.
Genesis ; 46(6): 289-93, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18543315

RESUMO

Thalamocortical input to layer 4 carries the major ascending sensory information to the mammalian sensory cortex and is crucial for the function and plasticity of sensory cortical areas. Here we report identification of a Six3-cre transgene that is selectively expressed in layer 4 of sensory cortical areas but not in the thalamus. In the mature somatosensory cortex Cre recombinase expressed from the transgene is able to mediate gene deletion in the overwhelming majority of layer 4 neurons, including GABAergic interneurons. The gene deletion in layer 4 mainly occurs during the first postnatal week. This cre transgene therefore provides a useful tool for examining the role of proteins expressed in layer 4 neurons.


Assuntos
Proteínas do Olho/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Integrases/metabolismo , Proteínas do Tecido Nervoso/genética , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Integrases/genética , Interneurônios/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Transgenes , Proteína Homeobox SIX3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...