Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 10(6): 1260-1271, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116229

RESUMO

Low-pressure cold spray (LPCS) has broadened the application field of cold spray owing to its portability and low cost. For additive manufacturing (AM) based on LPCS (LPCSAM), it is important to investigate the effects of parameters such as temperature and pressure of the gas, stand-off distance, gun traverse speed, and the number of scanning passes of the gun on the deposition and properties. This study aims to determine the optimal kinematic spray parameters for spraying Cu+Al2O3 powder onto an aluminum substrate through LPCS, so as to prepare for the next AM work. The deposition mass, deposition rate, microhardness, and roughness under different spraying conditions were studied. The best spraying effect, with a high deposition rate and without nozzle clogging, was obtained at a nitrogen pressure of 0.9 MPa and a temperature of 400°C.

2.
Biomater Res ; 27(1): 69, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452381

RESUMO

BACKGROUND: Blood-brain barrier (BBB) is a crucial but dynamic structure that functions as a gatekeeper for the central nervous system (CNS). Managing sufficient substances across the BBB is a major challenge, especially in the development of therapeutics for CNS disorders. METHODS: To achieve an efficient, fast and safe strategy for BBB opening, an acoustofluidic transwell (AFT) was developed for reversible disruption of the BBB. The proposed AFT was consisted of a transwell insert where the BBB model was established, and a surface acoustic wave (SAW) transducer realized using open-source electronics based on printed circuit board techniques. RESULTS: In the AFT device, the SAW produced acousto-mechanical stimulations to the BBB model resulting in decreased transendothelial electrical resistance in a dose dependent manner, indicating the disruption of the BBB. Moreover, SAW stimulation enhanced transendothelial permeability to sodium fluorescein and FITC-dextran with various molecular weight in the AFT device. Further study indicated BBB opening was mainly attributed to the apparent stretching of intercellular spaces. An in vivo study using a zebrafish model demonstrated SAW exposure promoted penetration of sodium fluorescein to the CNS. CONCLUSIONS: In summary, AFT effectively disrupts the BBB under the SAW stimulation, which is promising as a new drug delivery methodology for neurodegenerative diseases.

3.
Food Chem ; 408: 135204, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527920

RESUMO

This study reports the development of ZnSnO3 based gas sensors for pyridine detection in rice aging. Pyridine is one of heterocyclic markers formed via Maillard reaction and lipid oxidation. Herein, graphitic carbon nitride (g-C3N4) decorated ZnSnO3 microstructures were obtained through a template-free approach. And the sensing results reveal that 5 wt%g-C3N4 decorated ZnSnO3 exhibited a high sensitivity (47.9), a short response/recovery time (14/120 s) and a low detection limit (0.45 ppm), which is due to the catalysis of g-C3N4 nanosheets, the decorated microstructure and the formation of heterojunctions. Meanwhile, the practical experiment demonstrates that the sensitivity towards volatiles generated from Japonica rice aging is 48.7, which is around 4 and 2.5 times higher than those of Indica rice and Polished Glutinous rice, indicating that the sensor has anticipated application in the development of a high-performance E-nose for the quality inspection of rice and other products.


Assuntos
Oryza , Piridinas
4.
J Therm Spray Technol ; 31(1-2): 46-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37520911

RESUMO

In thermal spray process, the characteristics of in-flight particles (velocity and temperature) play an important role regarding the microstructure of the deposit and thus the coating performances. The implementation of diagnostic devices is necessary to measure such characteristics. Many imaging systems and algorithms have been developed for identifying and tracking in-flight particles. However, these current image systems have significant limitations in terms of accuracy for example. One key to solving the tracking problem is to get an algorithm that can effectively distinguish different particles in the same image frame at the same time. This study aims to develop an algorithm capable of identifying a large number of in-flight particles sprayed by thermal process. The results show that the noise and vignettes could be successfully treated, particles are clearly recognized in the background, leading to properly measuring the sizes and positions of the particle versus time. The proposed algorithm has a higher recognition rate and recognition range than other algorithms, which will provide a reasonable basis for subsequent calculation and processing.

5.
BMC Public Health ; 21(1): 2125, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798864

RESUMO

BACKGROUND: Animal bites are a major public health problem. The more serious the bite wound is, the higher the risk of developing rabies is. This study aimed to investigate the severity of wounds among animal bite victims and identify the influencing factors in Wuhan, China. METHODS: A cross-sectional study was conducted among 1015 animal bite victims visiting rabies prevention clinics. We performed a face-to-face interview to collect information on the exposure category of the bite wound, the type of the offending animal, exposure-to-risk situations, etc. Factors associated with exposure categories were identified by multivariate logistic regression analysis. RESULTS: Five hundred and sixty-four (55.57%) cases were category III exposures, 418 (41.18%) were category II exposures, and 33 (3.25%) were category I exposures. People who were hurt by their own domestic animals (odds ratio [OR] = 1.55, 95% confidence interval [CI]: 1.14-2.10), and those exposed to animals unvaccinated against rabies (OR = 1.45, 95% CI: 1.08-1.95) had a higher risk for category III exposures. Respondents who did not know the fatality of rabies were more likely to be injured seriously compared to those who knew that rabies is fatal, and the OR was 1.40 (95% CI, 1.05-1.86). CONCLUSIONS: This study showed that factors associated with the severity of bite wounds mainly included types of the offending animal, vaccination status of the animal, and knowledge of rabies fatality. Educational programs and awareness-raising campaigns should be provided to decrease severe animal bites, especially targeting pet owners and those with limited rabies knowledge.


Assuntos
Mordeduras e Picadas , Raiva , Animais , Animais Domésticos , Mordeduras e Picadas/epidemiologia , China/epidemiologia , Estudos Transversais , Humanos , Raiva/epidemiologia , Raiva/prevenção & controle
6.
Mater Sci Eng C Mater Biol Appl ; 106: 110289, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753386

RESUMO

This paper systematically investigates the biomedical performance of selective laser melted (SLM) porous Ti6Al4V ELI scaffolds for bone implantation through in vitro and in vivo experiments. Scaffolds with pore sizes of 500 µm, 600 µm and 700 µm and porosities of 60% and 70% were manufactured in order to explore the optimum pore size and porosity. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used in the in vitro experiments. Cell Counting Kit-8, live/dead staining and scanning electron microscope were used to assess the cytotoxicity of the porous scaffolds. DNA content quantification was performed to investigate cell proliferation on the porous scaffolds. The osteogenic differentiation of cells was measured by alkaline phosphatase (ALP) activity and osteogenic gene expressions, including bone morphogenetic protein-2 (BMP-2), collagen type 1α1 (COL-1), osteocalcin (OCN), osteopontin (OPN) and runt-related transcription factor-2 (RUNX-2). The Sprague-Dawley (SD) rat models with distal femoral condyles defect were used in the in vivo experiments. Micro-CT analysis and histological analysis were performed after implantation surgery to reveal the bone ingrowth into the porous scaffolds. All in vitro data were analyzed by one-way ANOVA followed by Tukey post hoc tests, in vivo data were analyzed using Kruskall-Wallis ANOVA and Conover-Inman post-hoc test. Based on the in vitro and in vivo experiments, it is found that the porous scaffolds manufactured by SLM did not induce a cytotoxic effect. Among all the porous scaffolds, the scaffold with a pore size of 500 µm and porosity of 60% showed the best cell proliferation and osteogenic differentiation (in vitro experiments) and bone ingrowth (in vivo experiments).


Assuntos
Diferenciação Celular , Proliferação de Células , Osteogênese , Alicerces Teciduais/química , Titânio/química , Ligas , Animais , Células da Medula Óssea/citologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fraturas Ósseas/terapia , Lasers , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Porosidade , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual , Titânio/toxicidade , Microtomografia por Raio-X
7.
J Colloid Interface Sci ; 534: 637-648, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30268080

RESUMO

The deposition of oxygen-defective ZnO films exhibiting varied nanostructures via Solution Precursor Plasma Spray (SPPS) route, a one-step, minute-scaled duration and large scale method, is reported. The in situ formation of oxygen vacancies in ZnO films was confirmed by UV-Visible, Raman and photoluminescence (PL) spectroscopy and the as-prepared samples exhibit a bandgap as low as 3.02 eV. Density functional theory (DFT) simulation demonstrates that the polarization of ZnO is enhanced by the created oxygen vacancies, leading to substantially improved photocatalytic activity. The comparative experiments also revealed that forming and preserving appropriate ZnO precursor clusters inside the plasma plume is requisite for obtaining propitious ZnO nanostructures, which was followed by the in situ transfer and growth of the clusters on the preheated substrate. The ZnO-NRs films fully degrade the aqueous Orange II dye solutions within 120 min and maintain a quasi-intact activity (95.8% retention) after five test runs, which highlight their good stability. The oxygen vacancies and the narrowing of the bandgap also enable a visible light-driven photodegradation activity with conversions as high as 54.1%. In summary, this work not only reveals that the photocatalytic activity of SPPS-deposited ZnO films benefit from oxygen vacancies and well nanostructures, but also suggests that the SPPS route is of high potential for preparing metal oxides films destined to functional applications.

8.
Nanotechnology ; 30(4): 045707, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30479317

RESUMO

Binary spinel-type metal oxides (AB2O4) related materials, including ferrites (AFe2O4), are attractive photocatalysts thanks to their excellent visible light response for the photodegradation of organic pollutants. Currently, these materials are synthesized via conventional chemical routes suffering from long preparation duration and multistep. Moreover, the photocatalysts are obtained as nano-powders from conventional chemical routes would introduce another drawback for their recycling and reuse. From an industrial perspective, it is desirable to develop an efficient and facile synthesis process to produce photocatalysts in a non-dispersible form. Herein, we demonstrate that the solution precursor plasma spray (SPPS) process is a single-step method for depositing photocatalytically active zinc ferrite-based films within several minutes. The influence of the precursor ratio on the microstructures and phase compositions of the ZnFe2O4 films was investigated by XRD and Raman analyses. In addition, two optimized ZnFe2O4 films were prepared by increasing the ZnO loading and tailoring injection pattern of the precursor solution. The surface morphologies and optical bandgap were also determined by SEM and UV-visible spectroscopy. The photocatalytic activities of the ZnFe2O4 films were evaluated through the degradation of the Orange II dye and of tetracycline hydrochloride under UV or visible light irradiation. The results show that compositional ratios and composition distribution of the ZnFe2O4 films prepared via SPPS played a key role on the photocatalytic activity. The SPPS route was demonstrated to be a promising method for the synthesis and the deposition of metal oxide (i.e. perovskite type and spinel type) films within a single-step for functional applications.

9.
Ultrason Sonochem ; 52: 336-343, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30573433

RESUMO

Hydraulic components are coated by thermal spraying to protect them against cavitation erosion. These coatings are built up by successive deposition of single splats. The behavior of a single splat under mechanical loading is still very vaguely understood. Yttria-stabilized zirconia (YSZ) and stainless-steel splats were obtained by plasma spraying onto stainless steel substrates. The velocity and temperature of particles upon impact were measured and the samples were subsequently exposed to cavitation erosion tests. An acoustic cavitation simulation estimated the water jet velocity and hammer stresses exerted by bubble collapse on the surface of the specimen. Although the results suggested that high stress levels resulted from cavitation loading, it was clear that weak adhesion interfaces played a crucial role in the accelerated cavitation-induced degradation.

10.
Materials (Basel) ; 12(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583510

RESUMO

In this work, the removal of manganese from nickel melts by Ar and (10%, 20% and 40%) H2 plasma arc melting under various pressures (0.01⁻0.02, 0.04⁻0.05 and 0.09⁻0.1 MPa) was investigated experimentally. The results show that only a slight reduction in the manganese content is obtained by Ar plasma arc melting (PAM). By contrast, the manganese content of liquid nickel decreases noticeably upon the addition of hydrogen to plasma gas, and the rate of manganese removal increases with increasing hydrogen volume fraction. In addition, the reduction in the pressure enhances the efficiency of manganese removal from liquid nickel by hydrogen plasma arc melting (HPAM). The process of manganese removal by HPAM was found to obey a first-order rate law. From kinetic analysis, the rate of reduction in the manganese content increases proportionally to the 0.73⁻0.75th power of the hydrogen volume fraction in the plasma gas. However, the rate of the manganese content reduction increases proportionally to approximately 0.88th power of %H2 in the plasma gas for the initial manganese content of 0.89 mass%, which is slightly higher than that for the initial manganese concentration of 0.45 mass%. Thermodynamic analysis indicates that the volatilization of manganese benefits from negative pressure and the presence of active hydrogen atoms that act as the transfer media of the metal vapor in the gas boundary layer.

11.
J Mech Behav Biomed Mater ; 71: 136-147, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28292707

RESUMO

To obtain hydroxyapatite (HA) coatings with high crystallinity which have long-term stability in clinical applications, coarse powders were usually injected to less energetic plasma. However, the HA coatings accumulated by partly melted particles usually have high porosity and poor mechanical properties, especially poor bonding strength. In this work, by profiting its quenching and mechanical impact, dry-ice blasting was in-situ employed during plasma spray process to improve the microstructure characterization and bonding strength of HA coatings. In addition, the influence of in-situ dry-ice blasting on the phase composition and crystallinity of plasma-sprayed HA coatings was investigated. The results show that a significant reduction of porosity and an apparent increase in bonding strength are revealed in plasma-sprayed HA coatings due to the cleaning effect of dry-ice blasting on the convex unmelted particles and splashing fragments. HA coatings prepared by the combination process of plasma spraying and dry-ice blasting have a compromise structure with minimum globular pores but with pronounced microcracks. The disappearance of CaO phase and the increase in crystallinity also derive from the application of dry-ice blasting.


Assuntos
Materiais Revestidos Biocompatíveis/análise , Gelo-Seco , Durapatita/análise , Teste de Materiais , Propriedades de Superfície
12.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 405-407, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770909

RESUMO

Tensile strength and ductility of Selective Laser Melting (SLM) processed commercially pure Ti (CP-Ti) were simultaneous enhanced by preforming the melting/solidification processes under Static Magnetic Field (SMF). The effects of SMF on microstructure and tensile properties were examined. The SMF-SLMed CP-Ti sample presents a microstructure of fine acicular martensitic α'-Ti and lath-shaped α-Ti. Meanwhile, the texture structure of SLMed CP-Ti was eliminated after adding a SMF. The SMF-SLM process offers new avenues to ameliorate the microstructure and improve the mechanical properties of SLMed sample.


Assuntos
Lasers , Campos Magnéticos , Resistência à Tração , Titânio/química , Propriedades de Superfície
13.
J Huazhong Univ Sci Technolog Med Sci ; 33(1): 43-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23392706

RESUMO

Benzene is an established leukotoxin and leukemogen in humans. We have previously reported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phosphorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apoptosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.


Assuntos
Apoptose/fisiologia , Benzeno/toxicidade , Cromonas/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Proteína Quinase Ativada por DNA/metabolismo , Morfolinas/farmacologia , Apoptose/efeitos dos fármacos , Catálise , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Humanos , Células K562 , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...