Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13081, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844477

RESUMO

Extracorporeal cardiopulmonary resuscitation (ECPR) is emerging as a feasible and effective rescue strategy for prolonged cardiac arrest (CA). However, prolonged total body ischemia and reperfusion can cause microvascular occlusion that prevents organ reperfusion and recovery of function. One hypothesized mechanism of microvascular "no-reflow" is leukocyte adhesion and formation of neutrophil extracellular traps. In this study we tested the hypothesis that a leukocyte filter (LF) or leukocyte modulation device (L-MOD) could reduce NETosis and improve recovery of heart and brain function in a swine model of prolonged cardiac arrest treated with ECPR. Thirty-six swine (45.5 ± 2.5 kg, evenly distributed sex) underwent 8 min of untreated ventricular fibrillation CA followed by 30 min of mechanical CPR with subsequent 8 h of ECPR. Two females were later excluded from analysis due to CPR complications. Swine were randomized to standard care (Control group), LF, or L-MOD at the onset of CPR. NET formation was quantified by serum dsDNA and citrullinated histone as well as immunofluorescence staining of the heart and brain for citrullinated histone in the microvasculature. Primary outcomes included recovery of cardiac function based on cardiac resuscitability score (CRS) and recovery of neurologic function based on the somatosensory evoked potential (SSEP) N20 cortical response. In this model of prolonged CA treated with ECPR we observed significant increases in serum biomarkers of NETosis and immunohistochemical evidence of microvascular NET formation in the heart and brain that were not reduced by LF or L-MOD therapy. Correspondingly, there were no significant differences in CRS and SSEP recovery between Control, LF, and L-MOD groups 8 h after ECPR onset (CRS = 3.1 ± 2.7, 3.7 ± 2.6, and 2.6 ± 2.6 respectively; p = 0.606; and SSEP = 27.9 ± 13.0%, 36.7 ± 10.5%, and 31.2 ± 9.8% respectively, p = 0.194). In this model of prolonged CA treated with ECPR, the use of LF or L-MOD therapy during ECPR did not reduce microvascular NETosis or improve recovery of myocardial or brain function. The causal relationship between microvascular NETosis, no-reflow, and recovery of organ function after prolonged cardiac arrest treated with ECPR requires further investigation.


Assuntos
Reanimação Cardiopulmonar , Modelos Animais de Doenças , Parada Cardíaca , Animais , Parada Cardíaca/terapia , Reanimação Cardiopulmonar/métodos , Suínos , Feminino , Masculino , Oxigenação por Membrana Extracorpórea/métodos , Leucócitos , Armadilhas Extracelulares/metabolismo , Procedimentos de Redução de Leucócitos/métodos
2.
Crit Care Explor ; 5(5): e0902, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181541

RESUMO

Prolonged cardiac arrest (CA) causes microvascular thrombosis which is a potential barrier to organ reperfusion during extracorporeal cardiopulmonary resuscitation (ECPR). The aim of this study was to test the hypothesis that early intra-arrest anticoagulation during cardiopulmonary resuscitation (CPR) and thrombolytic therapy during ECPR improve recovery of brain and heart function in a porcine model of prolonged out-of-hospital CA. DESIGN: Randomized interventional trial. SETTING: University laboratory. SUBJECTS: Swine. INTERVENTIONS: In a blinded study, 48 swine were subjected to 8 minutes of ventricular fibrillation CA followed by 30 minutes of goal-directed CPR and 8 hours of ECPR. Animals were randomized into four groups (n = 12) and given either placebo (P) or argatroban (ARG; 350 mg/kg) at minute 12 of CA and either placebo (P) or streptokinase (STK, 1.5 MU) at the onset of ECPR. MEASUREMENTS AND MAIN RESULTS: Primary outcomes included recovery of cardiac function measured by cardiac resuscitability score (CRS: range 0-6) and recovery of brain function measured by the recovery of somatosensory-evoked potential (SSEP) cortical response amplitude. There were no significant differences in recovery of cardiac function as measured by CRS between groups (p = 0.16): P + P 2.3 (1.0); ARG + P = 3.4 (2.1); P + STK = 1.6 (2.0); ARG + STK = 2.9 (2.1). There were no significant differences in the maximum recovery of SSEP cortical response relative to baseline between groups (p = 0.73): P + P = 23% (13%); ARG + P = 20% (13%); P + STK = 25% (14%); ARG + STK = 26% (13%). Histologic analysis demonstrated reduced myocardial necrosis and neurodegeneration in the ARG + STK group relative to the P + P group. CONCLUSIONS: In this swine model of prolonged CA treated with ECPR, early intra-arrest anticoagulation during goal-directed CPR and thrombolytic therapy during ECPR did not improve initial recovery of heart and brain function but did reduce histologic evidence of ischemic injury. The impact of this therapeutic strategy on the long-term recovery of cardiovascular and neurological function requires further investigation.

3.
Acta Pharm Sin B ; 12(5): 2462-2478, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646532

RESUMO

Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.

4.
Mol Neurobiol ; 59(3): 1872-1881, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35028899

RESUMO

Brain injury is the most common cause of death for patients resuscitated from cardiac arrest. Magnesium is an attractive neuroprotective compound which protects neurons from ischemic injury by reducing neuronal calcium overload via NMDA receptor modulation and preventing calcium-induced mitochondrial permeability transition. Intramuscular (IM) delivery of MgSO4 during CPR has the potential to target these mechanisms within an early therapeutic window. We hypothesize that IM MgSO4 administrated during CPR could achieve therapeutic serum magnesium levels within 15 min after ROSC and improve neurologic outcomes in a rat model of asphyxial cardiac arrest. Male Long Evans rats were subjected to 8-min asphyxial cardiac arrest and block randomized to receive placebo, 107 mg/kg, 215 mg/kg, or 430 mg/kg MgSO4 IM at the onset of CPR. Serum magnesium concentrations increased rapidly with IM delivery during CPR, achieving twofold to fourfold increase by 15 min after ROSC in all magnesium dose groups. Rats subjected to cardiac arrest or sham surgery were block randomized to treatment groups for assessment of neurological outcomes. We found that IM MgSO4 during CPR had no effect on ROSC rate (p > 0.05). IM MgSO4 treatment had no statistically significant effect on 10-day survival with good neurologic function or hippocampal CA1 pyramidal neuron survival compared to placebo treatment. In conclusion, a single dose IM MgSO4 during CPR achieves up to fourfold baseline serum magnesium levels within 15 min after ROSC; however, this treatment strategy did not improve survival, recovery of neurologic function, or neuron survival. Future studies with repeated dosing or in combination with hypothermic targeted temperature management may be indicated.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/terapia , Sulfato de Magnésio/uso terapêutico , Masculino , Neuroproteção , Ratos , Ratos Long-Evans
6.
Resusc Plus ; 1-2: 100007, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223294

RESUMO

AIM: High-dose valproic acid (VPA) improves the survival and neurologic outcomes after asphyxial cardiac arrest (CA) in rats. We characterized the pharmacokinetics, pharmacodynamics, and safety of high-dose VPA in a swine CA model to advance clinical translation. METHODS: After 8 â€‹min of untreated ventricular fibrillation CA, 20 male Yorkshire swine were resuscitated until return of spontaneous circulation (ROSC). They were block randomized to receive placebo, 75 â€‹mg/kg, 150 â€‹mg/kg, or 300 â€‹mg/kg VPA as 90-min intravenous infusion (n â€‹= â€‹5/group) beginning at ROSC. Animals were monitored for 2 additional hours then euthanized. Experimental operators were blinded to treatments. RESULTS: The mean(SD) total CA duration was 14.8(1.2) minutes. 300 â€‹mg/kg VPA animals required more adrenaline to maintain mean arterial pressure ≥80 â€‹mmHg and had worse lactic acidosis. There was a strong linear correlation between plasma free VPA Cmax and brain total VPA (r2 â€‹= â€‹0.9494; p â€‹< â€‹0.0001). VPA induced dose-dependent increases in pan- and site-specific histone H3 and H4 acetylation in the brain. Plasma free VPA Cmax is a better predictor than peripheral blood mononuclear cell histone acetylation for brain H3 and H4 acetylation (r2 â€‹= â€‹0.7189 for H3K27ac, r2 â€‹= â€‹0.7189 for pan-H3ac, and r2 â€‹= â€‹0.7554 for pan-H4ac; p â€‹< â€‹0.0001). CONCLUSIONS: Up to 150 â€‹mg/kg VPA can be safely tolerated as 90-min intravenous infusion in a swine CA model. High-dose VPA induced dose-dependent increases in brain histone H3 and H4 acetylation, which can be predicted by plasma free VPA Cmax as the pharmacodynamics biomarker for VPA target engagement after CA.

7.
ACS Appl Mater Interfaces ; 11(27): 23858-23869, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31245984

RESUMO

Although the functionalization of magnetic nanoparticles (MNPs) with biomolecules has been widely explored for various biological applications, achieving efficient bioconjugations with a wide range of biomolecules through a single, universal, and versatile platform remains a challenge, which may significantly impact their applications' outcomes. Here, we report a novel MNP platform composed of Au@Fe core/satellite nanoparticles (CSNPs) for versatile and efficient bioconjugations. The engineering of the CSNPs is facilely formed through the self-assembly of ultrasmall gold nanoparticles (AuNPs, 2-3 nm in diameter) around MNPs with a polysiloxane-containing polymer coating. The formation of the hybrid magnetic nanostructure is revealed by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), element analysis using atomic absorption spectroscopy, and vibrating sample magnetometer. The versatility of biomolecule loading to the CSNP is revealed through the bioconjugation of a wide range of relevant biomolecules, including streptavidin, antibodies, peptides, and oligonucleotides. Characterizations including DLS, TEM, lateral flow strip assay, fluorescence assay, giant magnetoresistive nanosensor array, high-performance liquid chromatography, and absorption spectrum are performed to further confirm the efficiency of various bioconjugations to the CSNP. In conclusion, this study demonstrates that the CSNP is a novel MNP-based platform that offers versatile and efficient surface functionalization with various biomolecules.


Assuntos
Materiais Revestidos Biocompatíveis/química , Ouro/química , Ferro/química , Nanopartículas de Magnetita , Nanopartículas Metálicas , Animais , Bovinos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula
8.
Mol Pharm ; 16(6): 2385-2393, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31002261

RESUMO

nab-Paclitaxel ( nab-P), an albumin-bound formulation of paclitaxel, was developed to improve the tolerability and antitumor activity of taxanes. The neonatal Fc receptor (FcRn) is a transport protein that can bind to albumin and regulate the homeostasis of circulating albumin. Therefore, the pharmacokinetics and pharmacodynamics of nab-P may be impacted by FcRn expression. This study aimed to investigate the effects of FcRn on nab-P elimination and distribution to targeted tissues. Wild-type and FcRn-knockout (FcRn-KO) mice were treated with nab-P, mouse-specific nab-P (distribution experiments only), and solvent-based paclitaxel (pac-T). Blood and tissue samples were collected for distribution analyses. Organ, urine, and fecal samples were collected for elimination analyses. The nab-P tissue penetration in the pancreas, fat pad, and kidney of wild-type mice, as reflected by the ratio of tissue/plasma concentration, was significantly higher (ranging from 5 to 80 fold) than that of FcRn-KO mice. In contrast, the tissue penetration of pac-T in these organs of FcRn-KO mice was similar to that of wild-type mice. More importantly, the excretion of nab-P in feces of FcRn-KO mice (45-68%) was significantly higher than that of wild-type mice (26-46%) from 8 to 48 h post treatment. In comparison, the difference of excretion of pac-T in feces between FcRn-KO mice and wild-type mice was smaller than that of nab-P. Furthermore, greater tissue penetration and fecal excretion were observed with nab-P than pac-T in both FcRn-KO and wild-type mice. These findings suggest that FcRn enhances the tissue distribution and penetration of nab-P in the targeted organs, while FcRn prevents excretion of nab-P to feces in the intestinal lumen. The findings support the notion that albumin nanoparticle delivery alters drug distribution and elimination through an FcRn-mediated process to impact drug efficacy and toxicity.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Paclitaxel/metabolismo , Receptores Fc/metabolismo , Albuminas/química , Animais , Camundongos , Camundongos Knockout , Nanopartículas/química , Distribuição Tecidual
10.
Mol Pharm ; 15(10): 4505-4516, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30180593

RESUMO

Previous studies have shown that different paclitaxel formulations produce distinct anticancer efficacy and safety profiles in animals and humans. This study aimed to investigate the distinct pharmacokinetics and tissue distribution of various nanoformulations of paclitaxel, which may translate into potential differences in safety and efficacy. Four nanoparticle formulations ( nab-paclitaxel, mouse albumin nab-paclitaxel [m -nab-paclitaxel], micellar paclitaxel, and polymeric nanoparticle paclitaxel) as well as solvent-based paclitaxel were intravenously administered to mice. Seventeen blood and tissue samples were collected at different time points. The total paclitaxel concentration in each tissue specimen was measured with liquid chromatography-tandem mass spectrometry. Compared with solvent-based paclitaxel, all four nanoformulations demonstrated decreased paclitaxel exposure in plasma. All nanoformulations were associated with paclitaxel blood-cell accumulation in mice; however, m- nab-paclitaxel was associated with the lowest accumulation. Five minutes after dosing, the total paclitaxel in the tissues and blood was approximately 44% to 57% of the administered dose of all paclitaxel formulations. Paclitaxel was primarily distributed to liver, muscle, intestine, kidney, skin, and bone. Compared with solvent-based paclitaxel, the different nanocarriers altered the distribution of paclitaxel in all tissues with distinct paclitaxel concentration-time profiles. nab-paclitaxel was associated with increased delivery efficiency of paclitaxel in the pancreas compared with the other formulations, consistent with the demonstrated efficacy of nab-paclitaxel in pancreatic cancer. All the nanoformulations led to high penetration in the lungs and fat pad, which potentially points to efficacy in lung and breast cancers. Micellar paclitaxel and polymeric nanoparticle paclitaxel were associated with high paclitaxel accumulation in the heart; thus, the risk of cardiovascular toxicity with these formulations may warrant further investigation. The solvent-based formulation was associated with the poorest paclitaxel penetration in all tissues and the lowest tissue-to-plasma ratio. The different nanocarriers of paclitaxel were associated with distinct pharmacokinetics and tissue distribution, which largely align with the observed efficacy and toxicity profiles in clinical trials.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacocinética , Paclitaxel/metabolismo , Paclitaxel/farmacocinética , Animais , Docetaxel/química , Composição de Medicamentos , Feminino , Camundongos , Nanopartículas/química , Espectrometria de Massas em Tandem
11.
J Bone Miner Res ; 31(12): 2193-2203, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27341689

RESUMO

Cell-extracellular matrix (ECM) interactions play major roles in controlling progenitor cell fate and differentiation. The receptor tyrosine kinase, discoidin domain receptor 2 (DDR2), is an important mediator of interactions between cells and fibrillar collagens. DDR2 signals through both ERK1/2 and p38 MAP kinase, which stimulate osteoblast differentiation and bone formation. Here we show that DDR2 is critical for skeletal development and differentiation of marrow progenitor cells to osteoblasts while suppressing marrow adipogenesis. Smallie mice (Ddr2slie/slie ), which contain a nonfunctional Ddr2 allele, have multiple skeletal defects. A progressive decrease in tibial trabecular bone volume/total volume (BV/TV) was observed when wild-type (WT), Ddr2wt/slie , and Ddr2slie/slie mice were compared. These changes were associated with reduced trabecular number (Tb.N) and trabecular thickness (Tb.Th) and increased trabecular spacing (Tb.Sp) in both males and females, but reduced cortical thickness only in Ddr2slie/slie females. Bone changes were attributed to decreased bone formation rather than increased osteoclast activity. Significantly, marrow fat and adipocyte-specific mRNA expression were significantly elevated in Ddr2slie/slie animals. Additional skeletal defects include widened calvarial sutures and reduced vertebral trabecular bone. To examine the role of DDR2 signaling in cell differentiation, bone marrow stromal cells (BMSCs) were grown under osteogenic and adipogenic conditions. Ddr2slie/slie cells exhibited defective osteoblast differentiation and accelerated adipogenesis. Changes in differentiation were related to activity of runt-related transcription factor 2 (RUNX2) and PPARγ, transcription factors that are both controlled by MAPK-dependent phosphorylation. Specifically, the defective osteoblast differentiation in calvarial cells from Ddr2slie/slie mice was associated with reduced ERK/MAP kinase and RUNX2-S319 phosphorylation and could be rescued with a constitutively active phosphomimetic RUNX2 mutant. Also, DDR2 was shown to increase RUNX2-S319 phosphorylation and transcriptional activity while also increasing PPARγ-S112 phosphorylation, but reducing its activity. DDR2 is, therefore, important for maintenance of osteoblast activity and suppression of marrow adipogenesis in vivo and these actions are related to changes in MAPK-dependent RUNX2 and PPARγ phosphorylation. © 2016 American Society for Bone and Mineral Research.


Assuntos
Adipogenia , Medula Óssea/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Osteogênese , Adiposidade , Animais , Células COS , Calcificação Fisiológica , Osso Esponjoso/patologia , Chlorocebus aethiops , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , PPAR gama/metabolismo , Fosforilação , Crânio/patologia
12.
Cancer Res ; 72(10): 2522-32, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22589273

RESUMO

A number of cancers predominantly metastasize to bone, due to its complex microenvironment and multiple types of constitutive cells. Prostate cancer especially has been shown to localize preferentially to bones with higher marrow cellularity. Using an experimental prostate cancer metastasis model, we investigated the effects of cyclophosphamide, a bone marrow-suppressive chemotherapeutic drug, on the development and growth of metastatic tumors in bone. Priming the murine host with cyclophosphamide before intracardiac tumor cell inoculation was found to significantly promote tumor localization and subsequent growth in bone. Shortly after cyclophosphamide treatment, there was an abrupt expansion of myeloid lineage cells in the bone marrow and the peripheral blood, associated with increases in cytokines with myelogenic potential such as C-C chemokine ligand (CCL)2, interleukin (IL)-6, and VEGF-A. More importantly, neutralizing host-derived murine CCL2, but not IL-6, in the premetastatic murine host significantly reduced the prometastatic effects of cyclophosphamide. Together, our findings suggest that bone marrow perturbation by cytotoxic chemotherapy can contribute to bone metastasis via a transient increase in bone marrow myeloid cells and myelogenic cytokines. These changes can be reversed by inhibition of CCL2.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Ósseas/secundário , Ciclofosfamida/farmacologia , Neoplasias da Próstata/patologia , Animais , Antineoplásicos Alquilantes/efeitos adversos , Medula Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CCL2/farmacologia , Ciclofosfamida/efeitos adversos , Docetaxel , Humanos , Interleucina-6/farmacologia , Masculino , Camundongos , Células Mieloides/efeitos dos fármacos , Transplante de Neoplasias , Taxoides/farmacologia
13.
Mol Cancer Ther ; 10(5): 902-14, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21372226

RESUMO

Smac mimetics are being developed as a new class of anticancer therapies. Because the single-agent activity of Smac mimetics is very limited, rational combinations represent a viable strategy for their clinical development. The combination of Smac mimetics with TNF-related apoptosis inducing ligand (TRAIL) may be particularly attractive because of the low toxicity of TRAIL to normal cells and the synergistic antitumor activity observed for the combination. In this study, we have investigated the combination synergy between TRAIL and a potent Smac mimetic, SM-164, in vitro and in vivo and the underlying molecular mechanism of action for the synergy. Our study shows that SM-164 is highly synergistic with TRAIL in vitro in both TRAIL-sensitive and TRAIL-resistant cancer cell lines of breast, prostate, and colon cancer. Furthermore, the combination of SM-164 with TRAIL induces rapid tumor regression in vivo in a breast cancer xenograft model in which either agent is ineffective. Our data show that X-linked IAP (XIAP) and cellular IAP 1 (cIAP1), but not cIAP2, work in concert to attenuate the activity of TRAIL; SM-164 strongly enhances TRAIL activity by concurrently targeting XIAP and cIAP1. Moreover, although RIP1 plays a minimal role in the activity of TRAIL as a single agent, it is required for the synergistic interaction between TRAIL and SM-164. This study provides a strong rationale to develop the combination of SM-164 and TRAIL as a new therapeutic strategy for the treatment of human cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Triazóis/farmacologia , Antineoplásicos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Sinergismo Farmacológico , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Triazóis/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
14.
Bone ; 48(6): 1354-61, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21419883

RESUMO

Prostate carcinoma frequently metastasizes to bone where the microenvironment facilitates its growth. Inhibition of bone resorption is effective in reducing tumor burden and bone destruction in prostate cancer. However, whether drugs that inhibit osteoclast function inhibit tumor growth independent of inhibition of bone resorption is unclear. Calcium is released during bone resorption and the calcium sensing receptor is an important regulator of cancer cell proliferation. The goal of this investigation was to elucidate the role of calcium released during bone resorption and to determine the impact of drugs which suppress bone resorption on tumor growth in bone. To compare tumor growth in a skeletal versus non-skeletal site, equal numbers of canine prostate cancer cells expressing luciferase (ACE-1(luc)) were inoculated into a simple collagen matrix, neonatal mouse vertebrae (vossicles), human de-proteinized bone, or a mineralized collagen matrix. Implants were placed subcutaneously into athymic mice. Luciferase activity was used to track tumor growth weekly, and at one month tumors were dissected for histologic analysis. Luciferase activity and tumor size were greater in vossicles, de-proteinized bone and mineralized collagen matrix versus non-mineralized collagen implants. The human osteoblastic prostate carcinoma cell line C4-2b also grew better in a mineral rich environment with a greater proliferation of C4-2b cells reflected by Ki-67 staining. Zoledronic acid (ZA), a bisphosphonate, and recombinant OPG-Fc, a RANKL inhibitor, were administered to mice bearing vertebral implants (vossicles) containing ACE-1 osteoblastic prostate cancer cells. Vossicles or collagen matrices were seeded with ACE-1(luc) cells subcutaneously in athymic mice (2 vossicles, 2 collagen implants/mouse). Mice received ZA (5 µg/mouse, twice/week), (OPG-Fc at 10mg/kg, 3 times/week) or vehicle, and luciferase activity was measured weekly. Histologic analysis of the tumors, vossicles and endogenous bones and serum biochemistry were performed. Antiresorptive administration was associated with decreased serum TRAP5b, reduced osteoclast numbers, and increased tibia and vossicle bone areas. ZA significantly decreased bone marrow calcium concentrations without affecting serum calcium. ZA and OPG-Fc significantly inhibited tumor growth in bone but not in collagen implants. In conclusion, the inhibitory effects of ZA or OPG-Fc on prostate tumor growth in bone are mediated via blocking bone resorption and calcium release from bone.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Cálcio/metabolismo , Divisão Celular/efeitos dos fármacos , Difosfonatos/farmacologia , Imidazóis/farmacologia , Osteoclastos/efeitos dos fármacos , Neoplasias da Próstata/patologia , Animais , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Cães , Masculino , Camundongos , Camundongos Nus , Ácido Zoledrônico
15.
Cancer Res ; 69(4): 1685-92, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19176388

RESUMO

Monocyte chemoattractant protein 1 (CCL2) is a recently identified prominent regulator of prostate cancer growth and metastasis. The purpose of this study was to investigate the mechanistic role of CCL2 in prostate cancer growth in bone. The present study found that CCL2 was up-regulated in osteoblasts (3-fold by PC-3 and 2-fold by VCaP conditioned medium) and endothelial cells (2-fold by PC-3 and VCaP conditioned medium). Parathyroid hormone-related protein (PTHrP) treatment of osteoblastic cells up-regulated CCL2 and was blocked by a PTHrP antagonist, suggesting that prostate cancer-derived PTHrP plays an important role in elevation of osteoblast-derived CCL2. CCL2 indirectly increased blood vessel formation in endothelial cells through vascular endothelial growth factor-A, which was up-regulated 2-fold with administration of CCL2 in prostate cancer cells. In vivo, anti-CCL2 treatment suppressed tumor growth in bone. The decreased tumor burden was associated with decreased bone resorption (serum TRAP5b levels were decreased by 50-60% in anti-CCL2-treated animals from VCaP or PC-3 cell osseous lesions) and microvessel density was decreased by 70% in anti-CCL2-treated animals with bone lesions from VCaP cells. These data suggest that a destructive cascade is driven by tumor cell-derived, PTHrP-mediated induction of CCL2, which facilitates tumor growth via enhanced osteoclastic and endothelial cell activity in bone marrow. Taken together, CCL2 mediates the interaction between tumor-derived factors and host-derived chemokines acting in cooperation to promote skeletal metastasis.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/fisiologia , Neoplasias da Próstata/patologia , Animais , Neoplasias Ósseas/prevenção & controle , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Endotélio Vascular/patologia , Humanos , Masculino , Camundongos , Camundongos SCID , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Osteoblastoma/patologia , Proteína Relacionada ao Hormônio Paratireóideo/antagonistas & inibidores , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Neoplasias da Próstata/irrigação sanguínea , Transplante Heterólogo
16.
Int J Cancer ; 123(10): 2267-78, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18729185

RESUMO

Expression of parathyroid hormone-related protein (PTHrP) correlates with prostate cancer skeletal progression; however, the impact of prostate cancer-derived PTHrP on the microenvironment and osteoblastic lesions in skeletal metastasis has not been completely elucidated. In this study, PTHrP overexpressing prostate cancer clones were stably established by transfection of full length rat PTHrP cDNA. Expression and secretion of PTHrP were verified by western blotting and IRMA assay. PTHrP overexpressing prostate cancer cells had higher growth rates in vitro, and generated larger tumors when inoculated subcutaneously into athymic mice. The impact of tumor-derived PTHrP on bone was investigated using a vossicle co-implant model. Histology revealed increased bone mass adjacent to PTHrP overexpressing tumor foci, with increased osteoblastogenesis, osteoclastogenesis and angiogenesis. In vitro analysis demonstrated pro-osteoclastic and pro-osteoblastic effects of PTHrP. PTHrP enhanced proliferation of bone marrow stromal cells and early osteoblast differentiation. PTHrP exerted a pro-angiogenic effect indirectly, as it increased angiogenesis but only in the presence of bone marrow stromal cells. These data suggest PTHrP plays a role in tumorigenesis in prostate cancer, and that PTHrP is a key mediator for communication and interactions between prostate cancer and the bone microenvironment. Prostate cancer-derived PTHrP is actively involved in osteoblastic skeletal progression.


Assuntos
Neoplasias Ósseas/secundário , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Neoplasias da Próstata/patologia , Animais , Western Blotting , Neoplasias Ósseas/patologia , Divisão Celular , Linhagem Celular Tumoral , Cães , Masculino , Camundongos , Reação em Cadeia da Polimerase , Neoplasias da Próstata/irrigação sanguínea , Ratos
17.
Cancer Metastasis Rev ; 25(4): 559-71, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17165129

RESUMO

Parathyroid hormone related protein (PTHrP) is a well characterized tumor derived product that also has integral functions in normal development and homeostasis. PTHrP is produced by virtually all tumor types that metastasize to bone and numerous studies have demonstrated a correlation between PTHrP expression and skeletal localization of tumors. PTHrP has prominent effects in bone via its interaction with the PTH-1 receptor on osteoblastic cells. Through indirect means, PTHrP supports osteoclastogenesis by upregulating the receptor activator of NFkappaB ligand (RANKL) in osteoblasts. PTHrP also regulates osteoblast proliferation and differentiation in manners that are temporal and dose dependent. Bone turnover has been implicated in the localization of tumors to bone and PTHrP increases bone turnover. Bone turnover results in the release of growth factors such as TGFbeta and minerals such as calcium, both of which impact tumor cell growth and contribute to continued PTHrP production. PTHrP also has anabolic properties and could be in part responsible for osteoblastic type reactions in prostate cancer. Finally, emerging roles of PTH and PTHrP in the support of hematopoietic stem cell development in the bone marrow microenvironment suggest that an interaction between hematopoietic cells and tumor cells warrants further investigation.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Receptores de Hormônios Paratireóideos/metabolismo , Transdução de Sinais
18.
Biochim Biophys Acta ; 1763(10): 1108-24, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16996152

RESUMO

We demonstrate that both c-N-Ras and c-K(B)-Ras are constitutively associated with purified mitochondria. c-K(B)-Ras is associated with the mitochondrial outer membrane, and c-N-Ras is associated with both the outer membrane and inner mitochondrial compartments. The mitochondrial morphology is abnormal in both c-N-Ras negative and K-Ras negative cells. Normal mitochondrial morphology was restored by targeting N-Ras to both the inner and outer mitochondrial compartments, or by ectopically expressing c-K(B)-Ras. Impaired mitochondrial function can result in increased CHOP and NFkappaB activity, typical for a retrograde signaling response. Both are constitutively elevated in the N-Ras negative cells, but not in the K-Ras negative background, and are restored by c-N-Ras targeted exclusively to the inner mitochondrial compartment. Surprisingly, both targeting and the ability to functionally reduce retrograde transcriptional activity were found to be independent of c-N-Ras farnesylation. Overall, these data demonstrate for the first time a (1) farnesylation independent function for c-N-Ras and (2) that N-Ras within the inner mitochondrial compartment is an essential component of the retrograde signaling system between the mitochondria and nucleus.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas ras/metabolismo , Proteínas ras/fisiologia , Animais , Células Cultivadas , Camundongos , Mitocôndrias/ultraestrutura , Isoformas de Proteínas , Proteínas ras/química , Proteínas ras/genética
19.
Cancer Res ; 66(18): 9065-73, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16982748

RESUMO

Prostate cancer almost exclusively metastasizes to skeletal sites, indicating that the bone provides a favorable microenvironment for its localization and progression. A natural yet understudied factor in bone that could facilitate tumor localization is elevated extracellular calcium ([Ca2+]o). The present study found that elevated [Ca2+]o (2.5 mmol/L) enhanced proliferation of skeletal metastatic prostate cell lines (PC-3 and C4-2B), but not the nonskeletal metastatic, epithelial-derived prostate cell line LNCaP. The proliferative effect of elevated [Ca2+]o was associated with higher expression of the calcium-sensing receptor (CaSR), a heterotrimeric G-protein-coupled receptor that is the predominant cell-surface sensor for [Ca2+]o. Knockdown of the CaSR via RNA interference reduced cell proliferation in vitro and metastatic progression in vivo. CaSR signaling in PC-3 cells was evaluated by measuring the elevated [Ca2+]o-dependent inhibition of cyclic AMP accumulation, induced by either prostaglandin E2 or forskolin. Elevated [Ca2+]o stabilized expression of cyclin D1, a protein required for cell cycle transition. Furthermore, elevated [Ca2+]o triggered activation of the Akt signaling pathway and enhanced PC-3 cell attachment. Both pertussis toxin (a G-protein inhibitor) and LY294002 (an inhibitor of Akt signaling) reduced cell attachment. These data suggest that elevated [Ca2+]o following increased bone remodeling could facilitate metastatic localization of prostate cancer via the CaSR and the Akt signaling pathway. Taken together, [Ca2+]o is a candidate mediator of prostate cancer bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Cálcio/fisiologia , Neoplasias da Próstata/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/metabolismo , Ciclina D1/biossíntese , Humanos , Masculino , Neomicina/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Transfecção
20.
J Biol Chem ; 281(40): 29730-8, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16908523

RESUMO

K-Ras-negative fibroblasts are defective in their steady-state expression of MMP-2. This occurs through c-K(B)-Ras dependent regulation of basal levels of AKT activity. In this report, we have extended those studies to demonstrate that in the absence of K-Ras expression, PDGF-BB fails to induce significant AKT activation, although this was not the case in N-Ras-negative cells. This phenotype was directly linked to PDGF-dependent cell migration. All of the independently immortalized K-Ras-negative cells failed to migrate upon the addition of PDGF. Only ectopic expression of c-K(B)-Ras, not c-K(A)-Ras nor oncogenic N-Ras, could restore both PDGF-dependent AKT activation and cell migration. Since most Ras binding partners can interact with all Ras isoforms, the specificity of PDGF-dependent activation of AKT and enhanced cell migration suggests that these outcomes are likely to be regulated through a c-K(B)-Ras-specific binding partner. Others have published that of the four Ras isoforms, only K(B)-Ras can form a stable complex with calmodulin (CaM). Along those lines, we provide evidence that 1) PDGF addition results in increased levels of a complex between c-K(B)-Ras and CaM and 2) the biological outcomes that are strictly dependent on c-K(B)-Ras (AKT activation and cell migration) are blocked by CaM antagonists. The PDGF-dependent activation of ERK is unaffected by the absence of K(B)-Ras and presence of CaM antagonists. This is the first example of a linkage between a specific biological outcome, cell migration, and the activity of a single Ras isoform, c-K(B)-Ras.


Assuntos
Movimento Celular/fisiologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/fisiologia , Animais , Becaplermina , Calmodulina/fisiologia , Linhagem Celular , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-sis , Proteínas ras/deficiência , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...