Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 68(4): 325-336, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30820607

RESUMO

OBJECTIVE AND DESIGN: Renal ischemia-reperfusion (IR)-induced acute kidney injury (AKI) remains a major challenge in clinic. The histone methyltransferases enhancer of zest homolog-2 (EZH2) is associated with the development of renal injury. However, the molecular mechanism has not been fully elucidated. MATERIALS: AKI in C57BL/6 mice was generated by renal IR. TREATMENTS: The 3-deazaneplanocin A (DZNeP), a selective EZH2 inhibitor, or vehicle was administrated in mice after IR. HK-2 cells were exposed to hypoxia-reoxygenation (H/R) stress. METHODS: Apoptosis was detected by TUNEL assay or flow cytometry. EZH2, caspase-3, p38, F4/80+ macrophages, and CD3+ T cells were examined by immunohistochemistry or Western blot. Tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, IL-6, and IL-18 were measured using RT-PCR. RESULTS: Mice treated with DZNeP exhibited less severe renal dysfunction and tubular injury following IR. EZH2 inhibition decreased apoptotic cells while reducing activation of caspase-3 in kidneys under IR condition. Moreover, EZH2 inhibition impaired the recruitment of CD3+ T cells and F4/80+ cells in kidneys with IR. Administration of DZNeP suppressed the production of TNF-α, MCP-1, IL-6, and IL-18 in IR-treated kidneys. Of note, EZH2 inhibition reduced p38 phosphorylation in kidneys after IR. In H/R-treated HK-2 cells, DZNeP treatment or EZH2 knockdown reduced apoptosis. EZH2 inhibition inactivated p38 resulting in reduction of active caspase-3 and proinflammatory molecules. By contrast, EZH2 overexpression induced p38 phosphorylation, caspase-3 activation, and production of proinflammatory molecules, which was reversed by SB203580. CONCLUSIONS: EZH2 plays a crucial role in IR-induced AKI via modulation of p38 signaling. Targeting EZH2/p38 signaling pathway may offer novel strategies to protect kidneys from acute kidney injury induced by ischemia-reperfusion.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Traumatismo por Reperfusão/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Caspase 3/metabolismo , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais
2.
J Anesth ; 29(6): 821-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26002230

RESUMO

PURPOSE: Hypoxia promotes the progression of lung cancer cells. Unfortunately, anesthetic technique might aggravate hypoxia of lung cancer cells. Sevoflurane is a commonly used anesthetic. Its effect on hypoxia-induced aggressiveness of lung cancer cells remains unknown. The aim of the study is to investigate the effects of sevoflurane on hypoxia-induced growth and metastasis of lung cancer cells. As hypoxia-inducible factor-1α (HIF-1α) plays a pivotal role in mediating the adaptation and tolerance of cancer cells under hypoxic microenvironment, the role of HIF-1α in the effect of sevoflurane on hypoxia-induced growth and metastasis has also been elucidated. METHODS: A549 cells were treated with normoxia, hypoxia, co-treatment of sevoflurane and hypoxia, and dimethyloxaloylglycine (DMOG, a HIF-1α agonist) for 4 h, respectively. MTT assay and colony formation assay were used to evaluate cell growth. Transwell assay was performed to detect invasion and migration ability. The protein level of HIF-1α, X-linked inhibitor of apoptosis protein (XIAP), survivin, fascin, heparanase (HPA), and p38 MAPK were determined by Western blotting. RESULTS: Hypoxia enhanced proliferation and metastatic potential of cells. Sevoflurane could suppress hypoxia-induced growth and metastasis ability of cells. Furthermore, HIF-1α, XIAP, survivin, fascin and HPA were down-regulated significantly by the co-treatment of sevoflurane and hypoxia as compared to hypoxia treatment. DMOG abolished the inhibiting effects of sevoflurane on hypoxia-induced growth and metastasis ability of cells. In addition, sevoflurane partly reversed the increase of p38 MAPK activity that was induced by hypoxia. CONCLUSIONS: Sevoflurane could suppress hypoxia-induced growth and metastasis of lung cancer cells, which might be associated with modulating HIF-1α and its down-stream genes. Moreover, p38 MAPK signaling pathway was involved in the regulation of HIF-1α by sevoflurane.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Éteres Metílicos/farmacologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Sevoflurano , Transdução de Sinais/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Neurosci Lett ; 560: 81-5, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24370596

RESUMO

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are the main enzymes that produce oxidative stress, which plays an important role in painful diabetic neuropathy. Curcumin has been reported to exert an antinociceptive effect in a rat model of diabetic neuropathy by suppressing oxidative stress in the spinal cord. However, it remains unknown whether the mechanism by which curcumin ameliorates diabetic neuropathy can be attributed to spinal NADPH oxidases. This study was designed to determine the effect of curcumin on diabetic neuropathy and to investigate its precise mechanism in relation to NADPH oxidase-mediating oxidative stress in the spinal cord. Diabetic neuropathy was induced in Sprague-Dawley rats by intraperitoneal injection with 1% streptozotocin (STZ; 60 mg/kg). After the onset of diabetic neuropathy, a subset of the diabetic rats received daily intragastric administrations of curcumin (200mg/kg) or intraperitoneal injections of apocynin (2.5mg/kg) for 14 consecutive days, whereas other diabetic rats received equivalent volumes of normal saline (NS). STZ resulted in diabetic neuropathy with hyperglycemia and a lower paw withdrawal threshold (PWT), accompanied by elevations in the expression of the NADPH oxidase subunits p47(phox) and gp91(phox) and in the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and a reduction in superoxide dismutase (SOD) activity (P<0.05) in the spinal cord. Both curcumin and apocynin ameliorated diabetic neuropathy. In conclusion, curcumin attenuated neuropathic pain in diabetic rats, at least partly by inhibiting NADPH oxidase-mediating oxidative stress in the spinal cord.


Assuntos
Antioxidantes/farmacologia , Curcumina/farmacologia , Neuropatias Diabéticas/tratamento farmacológico , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Acetofenonas/farmacologia , Animais , Antioxidantes/uso terapêutico , Peso Corporal/efeitos dos fármacos , Curcumina/uso terapêutico , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Malondialdeído/metabolismo , NADPH Oxidases/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Estreptozocina , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA