Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
BMC Infect Dis ; 24(1): 457, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689228

RESUMO

BACKGROUND: HIV-tuberculosis (HIV-TB) co-infection is a significant public health concern worldwide. TB delay, consisting of patient delay, diagnostic delay, treatment delay, increases the risk of adverse anti-TB treatment (ATT) outcomes. Except for individual level variables, differences in regional levels have been shown to impact the ATT outcomes. However, few studies appropriately considered possible individual and regional level confounding variables. In this study, we aimed to assess the association of TB delay on treatment outcomes in HIV-TB co-infected patients in Liangshan Yi Autonomous Prefecture (Liangshan Prefecture) of China, using a causal inference framework while taking into account individual and regional level factors. METHODS: We conducted a study to analyze data from 2068 patients with HIV-TB co-infection in Liangshan Prefecture from 2019 to 2022. To address potential confounding bias, we used a causal directed acyclic graph (DAG) to select appropriate confounding variables. Further, we controlled for these confounders through multilevel propensity score and inverse probability weighting (IPW). RESULTS: The successful rate of ATT for patients with HIV-TB co-infection in Liangshan Prefecture was 91.2%. Total delay (OR = 1.411, 95% CI: 1.015, 1.962), diagnostic delay (OR = 1.778, 95% CI: 1.261, 2.508), treatment delay (OR = 1.749, 95% CI: 1.146, 2.668) and health system delay (OR = 1.480 95% CI: (1.035, 2.118) were identified as risk factors for successful ATT outcome. Sensitivity analysis demonstrated the robustness of these findings. CONCLUSIONS: HIV-TB co-infection prevention and control policy in Liangshan Prefecture should prioritize early treatment for diagnosed HIV-TB co-infected patients. It is urgent to improve the health system in Liangshan Prefecture to reduce delays in diagnosis and treatment.


Assuntos
Coinfecção , Infecções por HIV , Pontuação de Propensão , Tuberculose , Humanos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Feminino , Masculino , Coinfecção/tratamento farmacológico , Coinfecção/epidemiologia , Adulto , China/epidemiologia , Tuberculose/tratamento farmacológico , Tuberculose/complicações , Pessoa de Meia-Idade , Resultado do Tratamento , Antituberculosos/uso terapêutico , Tempo para o Tratamento/estatística & dados numéricos , Diagnóstico Tardio
2.
Neural Regen Res ; 19(10): 2157-2174, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488550

RESUMO

Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.

3.
Environ Monit Assess ; 196(4): 360, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472494

RESUMO

As a crucial ecological protection area in China, the Southern hilly red soil region is characterized by uneven spatial and temporal distribution of ecological landscape elements, unpredictable and changeable interrelationships between them, diversified driving factors, and lack of comprehensive consideration of ecosystem services. In order to better understand the interaction between ecosystem services, restore regional ecology, and promote sustainable development, the evolution law and influencing mechanism of ecosystem services and their driving factors are quantitatively analyzed in the study. Based on simulations of different ecosystem services from 2000 to 2020, their spatial and temporal changes and the contributions of main drivers are quantified, their trade-offs and synergies are analyzed, and the changing rules under the influence of natural factors and socioeconomic factors are explored. The results show that (1) the crop production significantly increases in the southwest and north regions, the habitat quality decreases in urban and coastal areas, and the soil retention and water yield show an increasing trend from west to east. (2) Land use/cover is the main driver of carbon storage and habitat quality variation, and precipitation is an important driver of water yield spatial variation. (3) The crop production and the other four ecosystem services show a trade-offs relationship, and the relationship between supporting services and regulating services is the synergetic. (4) The altitude weakens the synergistic relationship between soil retention and habitat quality/carbon storage, while it enhances the synergistic relationship between soil retention and water yield. Driven by precipitation factors, ecosystem services related to water yield have significant differences in the change. The population density enhances the trade-offs of crop production and soil retention, as well as the synergistic relationship between soil retention and habitat quality/carbon storage. In different land use/cover (LULC), the influence of urban land on ecosystem services relationship change is more obvious. Overall, this study can provide scientific bases and policy suggestions for ecosystem protection/restoration in the red soil region of Southern China, which has an important theoretical and practical significance.


Assuntos
Ecossistema , Solo , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , China , Carbono , Água
4.
Plant Foods Hum Nutr ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489084

RESUMO

The immunostimulatory effects and the involved molecular mechanisms of polysaccharides from hawthorn fruit (Crataegus spp.) have not been well understood. In this study, the chemical composition, monosaccharide composition, uronic acid content, and structural features of hawthorn fruit polysaccharides (HFP) and the two collected fractions were analyzed. Both AF1-2 and AF2 have pectic-like structural features rich in galacturonic acid. AF2 showed superior proinflammatory effects on macrophages which significantly increased the secretion of pro-inflammatory cytokines interleukin-1ß, interleukin-6, and tumor necrosis factor-α, but not AF1-2. AF2 was found to activate the nuclear factor-κB signaling pathway with suppressed expression of IκBα but up-regulated expression of p-IκBα and nuclear factor-κB P65. The surface binding site of AF2 on macrophage cells was characterized and toll like receptor-4 was responsible for AF2 induced activation of down-stream nuclear factor-κB signaling pathways. AF2 from hawthorn fruit could be potentially used as a natural source of immunomodulator in functional foods.

5.
Adv Mater ; 36(15): e2305711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342600

RESUMO

High-performance proton exchange membrane (PEM) is crucial for the proton exchange membrane fuel cell (PEMFC). Herein, a novel "self-enhanced" PEM is fabricated for the first time, which is composed of perfluorinated sulfonic acid (PFSA) resin and its own nanofibers as reinforcement. With this strategy, the interfacial compatibility issue of conventional fiber-reinforced membranes is fully addressed and up to 80 wt% loading of PFSA nanofibers can be incorporated. Furthermore, on account of chain orientation within the PFSA nanofiber, single fiber exhibits super-high conductivity of 1.45 S cm-1, leading to state-of-the-art proton conductivity (1.1 S cm-1) of the as-prepared "self-enhanced" PEM so far, which is an order of magnitude increase compared with the bulk PFSA membrane (0.29 S cm-1). It surpasses any commercial PEM including the popular GORE-SELECT and Nafion HP membranes and is the only PEM with conductivity at 100 S cm-1 level. In addition, the mechanical strength and swelling ratio of membranes are both substantially improved simultaneously. Based on the high-performance "self-enhanced" PEM, high peak power densities of up to 3.6 W cm-2 and 1.7 W cm-2 are achieved in H2-O2 and H2-Air fuel cells, respectively. This strategy can be applied in any polymeric electrolyte membrane.

6.
Small ; : e2309648, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234134

RESUMO

The utility of electrochemical active biofilm in bioelectrochemical systems has received considerable attention for harvesting energy and chemical products. However, the slow electron transfer between biofilms and electrodes hinders the enhancement of performance and still remains challenging. Here, using Fe3 O4 /L-Cys nanoparticles as precursors to induce biomineralization, a facile strategy for the construction of an effective electron transfer pathway through biofilm and biological/inorganic interface is proposed, and the underlying mechanisms are elucidated. Taking advantage of an on-chip interdigitated microelectrode array (IDA), the conductive current of biofilm that is related to the electron transfer process within biofilm is characterized, and a 2.10-fold increase in current output is detected. The modification of Fe3 O4 /L-Cys on the electrode surface facilitates the electron transfer between the biofilm and the electrode, as the bio/inorganic interface electron transfer resistance is only 16% compared to the control. The in-situ biosynthetic Fe-containing nanoparticles (e.g., FeS) enhance the transmembrane EET and the EET within biofilm, and the peak conductivity increases 3.4-fold compared to the control. The in-situ biosynthesis method upregulates the genes involved in energy metabolism and electron transfer from the transcriptome analysis. This study enriches the insights of biosynthetic nanoparticles on electron transfer process, holding promise in bioenergy conversion.

7.
Bioelectrochemistry ; 156: 108622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38070364

RESUMO

Microbial fuel cells (MFCs) are an emerging technology in renewable energy and waste treatment and the scale-up is crucial for practical applications. Undoubtedly, the analysis and comprehension of MFC operation necessitate essential information regarding the response of the current distribution to variable operating conditions, which stands as one of its significant dynamic characteristics. In this study, the dynamic responses of current distribution to external stimuli (external load, temperature, pH, and electrolyte concentration) were investigated by employing a segmented anode current collector in a liter-scale MFC. The results demonstrated that, with respect to the anodic segment close to the cathode, a major response of the segment current to changes in load, temperature and pH was observed while minor response to changes in ion concentration. It was also found that external stimuli-induced high current usually led to a worse current distribution while increasing electrolyte ion concentration could simultaneously improve the maximal power generation and current distribution. In addition, the response time of segment current to input stimulus followed the pattern of temperature ˃ pH ˃ ion concentration ˃ external load. The results and implication of this study would be helpful in enhancing the operational stability of scale-up MFCs in future practical application.


Assuntos
Fontes de Energia Bioelétrica , Temperatura , Eletrodos , Eletrólitos
8.
Adv Mater ; 36(1): e2305854, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37671789

RESUMO

As a reliable energy-supply platform for wearable electronics, biosupercapacitors combine the characteristics of biofuel cells and supercapacitors to harvest and store the energy from human's sweat. However, the bulky preparation process and deep embedding of enzyme active sites in bioelectrodes usually limit the energy-harvesting process, retarding the practical power-supply sceneries especially during the complicated in vivo motion. Herein, a MXene/single-walled carbon nanotube/lactate oxidase hierarchical structure as the dual-functional bioanode is designed, which can not only provide a superior 3D catalytic microenvironment for enzyme accommodation to harvest energy from sweat, but also offers sufficient capacitance to store energy via the electrical double-layer capacitor. A wearable biosupercapacitor is fabricated in the "island-bridge" structure with a composite bioanode, active carbon/Pt cathode, polyacrylamide hydrogel substrate, and liquid metal conductor. The device exhibits an open-circuit voltage of 0.48 V and the high power density of 220.9 µW cm-2 at 0.5 mA cm-2 . The compact conformal adhesion with skin is successfully maintained under stretching/bending conditions. After repeatedly stretching the devices, there is no significant power attenuation in pulsed output. The unique bioelectrode structure and attractive energy harvesting/storing properties demonstrate the promising potential of this biosupercapacitor as a micro self-powered platform of wearable electronics.


Assuntos
Fontes de Energia Bioelétrica , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica , Catálise
9.
ACS Appl Mater Interfaces ; 15(46): 53429-53435, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37957114

RESUMO

In alkaline and neutral zero-gap CO2 electrolyzers, the carbon utilization efficiency of the electrocatalytic CO2 reduction to CO is less than 50% because of inherently homogeneous reactions. Utilization of the bipolar membrane (BPM) electrolyzer can effectively suppress (bi)carbonate formation and parasitic CO2 losses; however, an excessive concentration of H+ in the catalyst layer (CL) significantly hinders the activity and selectivity for CO2 reduction. Here, we report a microenvironment regulation strategy that controls the CL thickness and ionomer content to regulate local CO2 transport and the local pH within the CL. We report 80% faradaic efficiency of CO at a current density of 400 mA/cm2 without the use of a buffering layer, exceeding that of state-of-the-art catalysts with a buffering layer. A carbon utilization efficiency of 63.6% at 400 mA/cm2 is also obtained. This study demonstrates the significance of regulating the microenvironment of the CL in a BPM system.

10.
Langmuir ; 39(45): 16182-16190, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906836

RESUMO

Photoelectrochemical reduction of carbon dioxide (CO2) is a promising avenue to realize resourceful utilization of carbon dioxide and mitigate the energy shortage. Herein, a photocatalytic fuel cell with a bubbling fluidized cathode (PFC-BFC) is proposed to increase the performance of the photocatalytic CO2 reduction reaction (CO2RR). Titanium carbide (Ti3C2) is first used as a fluidized cathode catalyst with the dual features of superior capacitance and high CO2RR catalytic activity. Compared with the conventional PFC system, the as-proposed PFC-BFC system exhibits a higher gas production performance. Particularly, the generation rate and Faraday efficiency for CH4 production reach to 37.2 µmol g-1 h-1 and 72%, which are 10.9 and 6.5 times higher than that of the conventional PFC system, respectively. The bubbling fluidized cathode allows a rapid electron transfer between catalysts and the current collector and an efficient diffusion of catalysts in the whole solution, thus remarkably increasing the effective reaction area of the CO2RR. In addition, the fluidized reaction mechanism of charging/discharging-coupled CO2RR is investigated. Significantly, a magnified PFC-BFC system is designed and exhibits a similar gas generation rate compared to that of the small-scale system, indicating a good potential of scaling up in the industry applications. These results demonstrated that the proposed PFC-BFC system can maximize the utilization of catalyst active sites and enhance the reaction kinetics, providing an alternative design for the application of CO2RR.

11.
Soft Matter ; 19(38): 7323-7333, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37727081

RESUMO

Flexible control of droplet transportation is crucial in various applications but is constrained by liquid-solid friction. The development of biomimetic lubricant-impregnated slippery surfaces provides a new solution for flexible manipulation of droplet transportation. Herein, a light strategy is reported for flexibly controlling droplet transportation on photosensitive lubricant-impregnated slippery surfaces. Owing to the localized heating effect of a focused laser beam via photothermal conversion, the resultant thermal Marangoni flow and horizontal component of the surface tension associated with the asymmetric wetting ridges are together responsible for actuating droplet transportation. It is found that the asymmetry of the wetting ridge is dominated by the thickness of the infused oil layer, which directly affects the droplet transportation. The feasibility of this light strategy is also demonstrated by uphill movement, droplet coalescence, and chemical reaction. This study provides a new design for potential applications in open droplet microfluidics, analytical chemistry, diagnosis, etc.

12.
Lab Chip ; 23(19): 4287-4301, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682034

RESUMO

Flexible and precise manipulation of droplet transport is of significance for scientific and engineering applications, but real-time and on-demand droplet manipulation remains a challenge. Herein, we report a strategy using light for the outstanding manipulation of binary droplet motion on a high-energy surface and reveal the underlying mechanism. Upon irradiation to a substrate by a focused light beam, the substrate can provide a localized heating source via photothermal conversion, and a binary droplet can be flexibly transported on a high-energy surface with free contact-line pinning, exhibiting light-propelled droplet transport. We theoretically showed that the surface tension gradient across the droplet interface resulting from the localized photothermal effect is responsible for actuating droplet transport. Remarkably, the high reconfigurability and flexibility of light allowed for binary droplet transport with dynamically tunable velocity and direction as well as arbitrary trajectory assisted by 2D channels on a high-energy surface. Complex droplet transportation, controllable droplet coalescence, and anti-gravity motion were realized. The promising applicability of this light-fueled droplet platform was also demonstrated by directional transport of biosample droplets containing DNA molecules and cells, as well as successional microreactions.

13.
J Phys Chem Lett ; 14(32): 7313-7322, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37561049

RESUMO

High-throughput droplet splitting and controllable transport of generated microdroplets on open surfaces are crucial in a broad spectrum of applications. Herein, a light strategy for controlling high-throughput splitting of binary droplets and transport of generated microdroplets on a high-energy substrate endowed by a localized photothermal effect is reported. Strong Marangoni flow as a result of the surface tension gradient and limited inward flow at the droplet bottom as a result of the significant viscous effect are together responsible for binary droplet splitting. The temperature gradients across the generated microdroplets established at the core heating zone are responsible for their transport away from the laser-acted zone. Remarkably, assisted by hydrophobic stripes on a high-energy substrate, high-throughput binary droplet splitting and controllable transport of generated microdroplets can be realized. Successful applications in biosample droplets and parallelized microreactions highlight the promising potential of this light strategy in open droplet microfluidics, biological assays and diagnosis, etc.

14.
Water Res ; 244: 120499, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634456

RESUMO

Biological treatment that utilizes microalgae technology has demonstrated outstanding efficacy in the wastewater purification and nutrients recovery. However, the high turbidity of the digested piggery wastewater (DPW) leads to serious light attenuation and the culture mode of suspended microalgae results in a huge landing area. Thus, to overcome light attenuation in DPW, a non-immersed titled zigzag microalgae biofilm was constructed by attaching it onto a porous cotton cloth. As a result, the light could directly irradiate microalgae biofilm that attached on both sides of the cotton cloth, and the microalgal biofilm area was up to 6 m2 per bioreactor landing area. When the non-immersed zigzag microalgae biofilm bioreactor (N-Z-MBP) was used to treat wastewater with an ammonia nitrogen (NH4+-N) concentration of 362 mg L-1, the NH4+-N was completely removed in just 5 days and the maximum growth rate of microalgae biofilm reached 7.02 g m-2 d-1. After 21 days of long-term sequencing batch operation for the N-Z-MBP, the biomass density of the biofilm reached 52 g m-2 and remained at this high value for the next 14 days. Most importantly, during the 35 days' running, the NH4+ -N maximum removal rate of single batch reached up to 65 mg L-1 d-1 and its concentration in the effluent was always below the discharge standard value (80 mg L-1 form GB18596-2001 of China) and total phosphorus was completely removed in each batch. Furthermore, the biomass concentration of microalgae cells in the effluent of the N-Z-MBP was almost zero, indicating that the non-submerged biofilm achieved in situ separation of microalgae from the wastewater. This work suggests that the N-Z-MBP can effectively purify DPW over a long period, providing a possible strategy to treat wastewater with high ammonia nitrogen and high turbidity.


Assuntos
Poluentes Ambientais , Microalgas , Águas Residuárias , Amônia , Biofilmes , Nitrogênio , Fósforo , Biomassa
15.
Adv Mater ; 35(39): e2304465, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37318943

RESUMO

As an efficient alternative for harnessing the energy from human's biofluid, a wearable energy harvesting-storage hybrid supercapacitor-biofuel cell (SC-BFC) microfluidic system is established with one multifunctional electrode. The electrode integrates metal-organic framework (MOF) derived carbon nanoarrays with embedded Au, Co nanoparticles on a flexible substrate, and is used for the symmetric supercapacitor as well as the enzyme nanocarriers of the biofuel cell. The electrochemical performance of the proposed electrode is evaluated, and the corresponding working mechanism is studied in depth according to the cyclic voltammetry and density functional theory calculation. The multiplexed microfluidic system is designed to pump and store natural sweat to maintain the continuous biofuel supply in the hybrid SC-BFC system. The biofuel cell module harvests electricity from lactate in sweat, and the symmetric supercapacitor module accommodates the bioelectricity for subsequent utilization. A numerical model is developed to validate the normal operation in poor and rich sweat under variable situations for the microfluidic system. One single SC-BFC unit can be self-charged to ≈0.8 V with superior mechanical durability in on-body testing, as well as energy and power values of 7.2 mJ and 80.3 µW, respectively. It illustrates the promising scenery of energy harvesting-storage hybrid microfluidic system.

16.
Small ; 19(43): e2303016, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376828

RESUMO

Ni single-atom catalysts (SACs) are appealing for electrochemical reduction CO2 reduction (CO2 RR). However, regulating the balance between the activity and conductivity remains a challenge to Ni SACs due to the limitation of substrates structure. Herein, the intrinsic performance enhancement of Ni SACs anchored on quasi-one-dimensional graphene nanoribbons (GNRs) synthesized is demonstrated by longitudinal unzipping carbon nanotubes (CNTs). The abundant functional groups on GNRs can absorb Ni atoms to form rich Ni-N4 -C sites during the anchoring process, providing a high intrinsic activity. In addition, the GNRs, which maintain a quasi-one-dimensional structure and possess a high conductivity, interconnect with each other and form a conductive porous framework. The catalyst yields a 44 mA cm-2 CO partial current density and 96% faradaic efficiency of CO (FECO ) at -1.1 V vs RHE in an H-cell. By adopting a membrane electrode assembly (MEA) flow cell, a 95% FECO and 2.4 V cell voltage are achieved at 200 mA cm-2 current density. This work provides a rational way to synthesize Ni SACs with a high Ni atom loading, porous morphology, and high conductivity with potential industrial applications.

17.
Bioresour Technol ; 385: 129374, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352988

RESUMO

Fatty acid photodecarboxylase in Chlorella variabilis NC64A (CvFAP) performed excellent ability to exclusively decarboxylate renewable fatty acids for C1-shortened hydrocarbons fuel production under visible light. However, the large-scale application by such an approach is limited by the free state of CvFAP catalyst, which is unstable for efficient biofuel production. In this study, CvFAP was immobilized in magnetic nickel ferrite (NiFe2O4) nanoparticles for facile recovery by a simple procedure. The shift of Ni 2p in electron binding energy was detected to clarify the interaction between Ni2+ and histidine of CvFAP. The coordination of NiFe2O4 and CvFAP contributed to an efficient affinity binding with an immobilization capacity of 98 mg/g carrier. Hydrocarbon fuel concentration of 3.7 mM was obtained by NiFe2O4@CvFAP-induced photoenzymatic decarboxylation. The high stability of CvFAP in terms of residual enzyme activity of 79.7% at pH 9.0 and that of 68% at organic solvent ratio of 60%, respectively, were observed.


Assuntos
Chlorella , Nanopartículas , Ácidos Graxos/metabolismo , Chlorella/metabolismo , Fenômenos Magnéticos
18.
Bioresour Technol ; 382: 129120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37141996

RESUMO

The efficient cultivation of microalgae using CO2 from flue gas can be a win-win situation for both environmental protection and energy accessibility. In general, 10-20% of CO2 in flue gas would decrease pH and inhibit microalgae growth. However, Chlorella sorokiniana MB-1 under 15% CO2 showed a periodical auto-agglomeration, which promoted microalgae growth on the contrary in this study. The maximum biomass concentration of 3.27 g L-1 was higher than that cultivated with an optimal CO2 concentration. The pH decreased to 6.04 after the mixed gas with 15% CO2 (v/v) was bubbled into medium for 0.5 h, which resulted in auto-agglomeration to protect microalgae from acidification and keep a high specific growth rate of 0.03 h-1. Then the pH recovered to 7 during stabilization phase, auto-agglomeration ratio was up to 100% because of lamellar extracellular polymeric substances. Therefore, the interesting periodical agglomeration both enhanced growth and simplified harvesting.


Assuntos
Chlorella , Microalgas , Dióxido de Carbono/farmacologia , Biomassa
19.
Chem Commun (Camb) ; 59(44): 6674-6677, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37096404

RESUMO

Green light was documented to improve the photostability of fatty acid photodecarboxylase from Chlorella variabilis (CvFAP). Compared to blue light, green light increased the pentadecane yield by 27.6% and improved the residual activity of CvFAP to 5.9-fold after the preillumination. Kinetics and thermodynamics indicated that blue light facilitated a high CvFAP activity.


Assuntos
Chlorella , Ácidos Graxos , Luz , Catálise
20.
Inflamm Res ; 72(5): 1021-1035, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37016140

RESUMO

OBJECTIVE: This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. METHODS: HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied. RESULTS: Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV. CONCLUSION: Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation.


Assuntos
Artrite Reumatoide , Neovascularização Patológica , Humanos , Ratos , Animais , Resveratrol/farmacologia , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Lipopolissacarídeos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Glicólise , Guanosina Trifosfato/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...