Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 3(4): 1516-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21431177

RESUMO

Polypropylene was successfully covalently grafted onto the surface of thermally reduced graphite oxide (PP-g-TRGO) by taking advantage of the "residual oxygen-containing functional groups" and the "grafting to" method. The PP-g-TRGO obtained showed an improved compatibility, and interfacial interaction, with an isotactic PP (iPP) matrix. The iPP/PP-g-TRGO nanocomposite exhibited a dramatically improved thermal stability compared to that of neat iPP even at low loadings.


Assuntos
Cristalização/métodos , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polipropilenos/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Óxidos/química , Tamanho da Partícula , Propriedades de Superfície
2.
ACS Appl Mater Interfaces ; 2(11): 3092-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20949901

RESUMO

When fabricated by thermal exfoliation, graphene can be covalently functionalized more easily by applying a direct ring-opening reaction between the residual epoxide functional groups on the graphene and the amine-bearing molecules. Investigation by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) all confirm that these molecules were covalently grafted to the surface of graphene. The resulting dispersion in an organic solvent demonstrated a long-term homogeneous stability of the products. Furthermore, comparison with traditional free radical functionalization shows the extent of the defects characterized by TEM and Raman spectroscopy and reveals that direct functionalization enables graphene to be covalently functionalized on the surface without causing any further damage to the surface structure. Thermogravmetric analysis (TGA) shows that the nondestroyed graphene structure provides greater thermal stability not only for the grafted molecules but also, more importantly, for the graphene itself, compared to the free-radical grafting method.

3.
Nanotechnology ; 19(37): 375305, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-21832549

RESUMO

This study fabricates dye-sensitized solar cells (DSSCs) based on TiO(2)/multi-walled carbon nanotube (MWCNT) nanocomposite photoanodes obtained by the modified acid-catalyzed sol-gel procedure. Results show that incorporating MWCNTs into a TiO(2)-based electrode efficiently improves the physicochemical properties of the solar cell. The results of dye adsorption and cell performance measurements indicate that introducing MWCNTs would improve the roughness factor (from 834 to 1267) of the electrode and the charge recombination of electron/hole (e(-)/h(+)) pairs. These significant changes could lead to higher adsorbed dye quantities, photocurrent and DSSC cell performance. Nevertheless, a higher loading of MWCNTs causes light-harvesting competition that affects the light adsorption of the dye-sensitizer, and consequently reduces the cell efficiency. This study suggests an optimum MWCNT loading in the electrode of 0.3 wt%, and proposes a sol-gel synthesis procedure as a promising method of preparing the TiO(2)-based nanocomposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA