Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Syst Appl Microbiol ; 42(5): 126004, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31402073

RESUMO

Two novel strains, designated 11W25H-1T and 8H24J-4-2T, were isolated from surface-sterilized plant tissues collected from the Taklamakan Desert in the Xinjiang Uygur Autonomous Region, China. The strains were characterized by a polyphasic approach in order to clarify their taxonomic positions. They were Gram-stain positive, aerobic, non-motile, non-spore-forming and rod-shaped. The 16S rRNA gene sequences of the strains showed highest similarities with Labedella gwakjiensis KCTC 19176T (99.2% and 98.9%, respectively) and Labedella endophytica CPCC 203961T (98.9% and 99.0%, respectively). The sequence similarity between strains 11W25H-1T and 8H24J-4-2T was 99.4%. Phylogenetic analyses based on 16S rRNA gene sequences and single-copy phylogenetic marker genes (pMGs) showed that the two strains belonged to the genus Labedella and formed a separate cluster from the closest species L. gwakjiensis KCTC 19176T and L. endophytica CPCC 203961T. Genomic analyses, including average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH), clearly separated the strains from each other and from the other species of the genus Labedella with values below the thresholds for species delineation. The two strains showed chemotaxonomic characteristics and phenotypic properties in agreement with the description of the genus Labedella and also confirmed the differentiation from the closest species. The data demonstrated that strains 11W25H-1T and 8H24J-4-2T represented two novel species of the genus Labedella, for which the names Labedella phragmitis sp. nov. (type strain 11W25H-1T=JCM 33144T=CGMCC 1.16700T) and Labedella populi sp. nov. (type strain 8H24J-4-2T=JCM 33143T=CGMCC 1.16697T) are proposed.


Assuntos
Actinobacteria/classificação , Filogenia , Plantas/microbiologia , Actinobacteria/química , Actinobacteria/genética , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos/genética , Genoma Bacteriano/genética , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Vitamina K 2/química
3.
Front Microbiol ; 10: 1540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333631

RESUMO

Moutai is a world-famous traditional Chinese liquor with complex taste and aroma, which are considered to be strongly influenced by the quality of fermentation starters (Daqu). However, the role of microbial communities in the starters has not been fully understood. In this study, we revealed the microbial composition of 185 Moutai starter samples, covering three different types of starters across immature and mature phases, and functional gene composition of mature starter microbiome. Our results showed that microbial composition patterns of immature starters varied, but they eventually were similar and steady when they became mature starters, after half-year storage and subsequent mixing. To help identify two types of immature starters, we selected seven operational taxonomic unit (OTU) markers by leave-one-out cross validation (LOOCV) and an OTU classified as Saccharopolyspora was the most decisive one. For mature starters, we identified a total of 16 core OTUs, one of which annotated as Bacillus was found positively associated with saccharifying power. We also identified the functional gene and microbial composition in starch and cellulose hydrolysis pathways. Microbes with higher abundances of alpha-glucosidase, alpha-amylase, and glucoamylase probably contributed to high saccharifying power. Overall, this study reveals the features of Moutai starter microbial communities in different phases and improves understanding of the relationships between microbiota and functional properties of the starters.

4.
J Microbiol ; 57(9): 725-731, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31124044

RESUMO

A Gram-staining-positive, motile and short-rod-shaped actinobacterium designated 9W16Y-2T was isolated from surface-sterilized leaves of reed (Phragmites australis) collected from Taklamakan Desert in Xinjiang Uygur Autonomous Region, China. Colonies were pale greenish yellow, circular, smooth, and convex. The 16S rRNA gene sequence of strain 9W16Y-2T exhibited highest sequence similarities with Aeromicrobium camelliae CGMCC 1.12942T (99.0%) and Aeromicrobium erythreum NRRL B-3381T (97.2%). Phylogenetic analyses based on 16S rRNA gene sequences and single-copy phylogenetic marker genes (pMGs) showed that strain 9W16Y-2T belonged to the genus Aeromicrobium and formed a monophyletic clade with Aeromicrobium camelliae CGMCC 1.12942T. Furthermore, average nucleotide identity (ANI) and DNA-DNA hybridization (DDH) clearly separated strain 9W16Y-2T from the other species of the genus Aeromicrobium with values below the thresholds for species delineation. The G+C content of the genomic DNA is 68.9 mol%. The diagnostic diamino acid of the cell-wall peptidoglycan was LL-diaminopimelic acid. The predominant menaquinone was MK-9(H4). The major fatty acids (> 10% of the total fatty acids) were C18:0 10-methyl (TBSA) (28.2%), C16:0 (21.0%), C16:0 2-OH (20.8%) and C18:1ω9c (12.8%). The polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, an unidentified aminophospholipid and an unidentified lipid. Based on the phylogenic, phenotypic and chemotaxonomic features, strain 9W16Y-2T represents a novel species of the genus Aeromicrobium, for which the name Aeromicrobium endophyticum sp. nov. is proposed. The type strain is 9W16Y-2T (= CGMCC 1.13876T = JCM 33141T).


Assuntos
Actinobacteria/isolamento & purificação , Endófitos/isolamento & purificação , Poaceae/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/metabolismo , Técnicas de Tipagem Bacteriana , Parede Celular/química , Parede Celular/metabolismo , China , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA